学年

質問の種類

英語 高校生

英検準一級の要約問題です。 添削していただけないでしょうか?🙇‍♀️

英検公式サンプル問題 ⚫ Instructions: Read the article below and summarize it in your own words as far as possible in English. ⚫ Suggested length: 60-70 words Write your summary in the space provided on your answer sheet. Any writing outside the space will not be graded. From the 1980s to the early 2000s, many national museums in Britain were charging their visitors entrance fees. The newly elected government, however, was supportive of the arts. It introduced a landmark policy to provide financial aid to museums so that they would drop their entrance fees. As a result, entrance to many national museums, including the Natural History Museum, became free of charge. Supporters of the policy said that as it would widen access to national museums, it would have significant benefits. People, regardless of their education or income, would have the opportunity to experience the large collections of artworks in museums and learn about the country's cultural history. Although surveys indicated that visitors to national museums that became free increased by an average of 70 percent after the policy's introduction, critics claimed the policy was not completely successful. This increase, they say, mostly consisted of the same people visiting museums many times. Additionally, some independent museums with entrance fees said the policy negatively affected them. Their visitor numbers decreased because people were visiting national museums to avoid paying fees, causing the independent museums to struggle financially.

回答募集中 回答数: 0
数学 高校生

命題の証明 3の倍数でないことをいうため、3×整数+1 または3×整数+2 の形の式を作りたいです。 9k²+9k+4を3でくくると3(3k²+3k+1)+1 9k²+15k+8を3でくくると3(3k²+5k+2)+2 となぜなるんですか?4を3でくくると普通×3分の1で... 続きを読む

次式について 対偶「nが3の倍数でないならば、 hath+2は3の倍数でない」 nが3の倍数でないとき。 12 [REPEAT 数学Ⅰ 問題114] (1) の方が示しやすい。(代入しやすい) n は整数とする。次の命題を証明せよ。(10点)結論→対偶を利用 仮定²+n+2が3の倍数ならば,nは3の倍数である。 するといい 1次式について を証明すればよい。 kを整数とし、←人事 全ての数は、 3k,3k+1, k=0で0 1 ' 38+2 . 2 kを整数として、n=3k+1 k=1で3 4 5 または、n=3k+2 と表されるので、 k=2で6 7 8 (i) h=3k+1のとき、 n²+n+2 =(3+1)+(3k+1)+2 =9k2+9k+4 = 3(3R2+3R+1)+1← 3k2+3k+1は整数より、 hth+23の倍数でない。 (1) n=3k+2のとき(と 3の倍数3の倍数3の倍数 である でない でない 整数 3x+ の形 4k+1 ※同じように 40 5の 60 44k 倍数 5k 倍数 6k 倍数 4k+25k+2 5k+1 6k+1 6k+2 整数 hath+2 =(3k+2)+(3k+2)+2 同 3x+2 4k+3 15k+3 16k+3 =9k²+15k+8 =3(3k²+5k+2)+25 の形 4の倍数 5k+4 6RT4 でない 5の倍数 6k+5 対偶が真より でない 3k25k+2は整数より もとの命題も真 ++2、3の倍数でない。 と表せる。 6の倍数 でない

解決済み 回答数: 2