学年

質問の種類

数学 高校生

どうして、方程式が実数解を持つようなkの値を求めるために、複素数の相等という解法を用いるのですか?

68 2 重要 例題 43 虚数を係数とする2次方程式 000 の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように の値を定めよ。 また、 その実数解を求めよ。 CHART 解答 SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る。 MOITULO 実物 D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1+i)ω2+(k+i)a+3+3ki = 0 基本 この左辺を a+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, 6=0 ←α, kの連立方程式が得られる。 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i=0 α,kは実数であるから, a2+ka+3,a2+α+3k も実数。 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって a2+ka+3=0 ...... ① α2+α+3k=0 ...... ② ①② から ゆえに よって k=1 または α=3 [1] k=1 のとき ! なぜ (S-)&+n)e=1-e-s x=α EXERCISES A 33 次の2 を代入する。 ◆a+bi = 0 の形に整 (1) 2 (3) 342 次の (1) (3) 35③ (1) ■この断り書きは重B 363 ◆ 複素数の相等。 ◆ α2 を消去。 infk を消去すると α-22-9=0 が得られ 1037 ①,② はともに2+α+3=0 となる。 因数定理 (p.83 基本事項 を利用すれば解くこと きる。 c1 0>(S- これを満たす実数 αは存在しないから,不適。 ◆D=12-4・1・3=-11 03 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 >0 ①:32+3k+3=0 103 ②:32+3+3k=0 [1], [2] から, 求めるんの値は 実数解は k=-4 0> x=3 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のはa,b,c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0の解 ■はx=0, iであり,異なる2つの実数解をもたない (p.81 補足参照)。 H

未解決 回答数: 1
地学 高校生

問2がいまいちよく理解できません。分かりやすく解説していただけるとうれしいです。お願いします

思考 133. 銀河系の構造図は、銀河系の構造を模式的に示したものである。 次の文章を読み、 図を参考にして以下の問いに答えよ。 銀河系のおよそ(ア)個の恒星は,主に 直径2万光年の球状の(イ)と直径約10万 光年の円盤部に分布している。 また, およそ 約200個のウ)星団は、銀河系全体を取 り囲む直径約15万光年の球状の領域である 35. (エ)に分布している。 太陽系は、銀河系の中心から約 2.8万光年 に位置し, 速さ約220km/sで公転している。 このことから, 銀河系の中心の周りを一周す。 20-00xN るのに約(オ億年かかることがわかる。 問1 文章中,図中の空欄 (ア)~(エ)に入る最も適当な語または数値を答えよ。 問2 太陽系が銀河系の中心を中心とする円周上を,一定の速さで運動していると仮定し (オ)を有効数字2桁で求めよ。 ただし, 光の速度=30万km/s,π= 3.14 とし, 途中の計算式も答えよ。 問3 太陽系の年齢を46億歳とし, 太陽系が誕生してから現在までに銀河系の中心の周り を約何周したかを有効数字2桁で求めよ。 ただし, 太陽系の誕生以来,太陽系の軌道 は変化しなかったと仮定する。 途中の計算式も答えよ。 [知識] 星団 円盤部 イ エ 太陽 場合で2.8万光年 |10万光年 15万光年 (09 広島大 改 ) K 13 原 1²

回答募集中 回答数: 0
数学 高校生

2番解説してください!

240 第4章 図形と計量 考え方 (1) 正弦定理 例題 123 正弦と余弦の融合 8 △ABCにおいて13 sin A sin B (1) cos A, cos B, cos C を求めよ. (2) A,B,C のうち, 2番目に大きい角は30°より大きいことを示せ 解答 Focus 注> necos A = b sin B sin A a: bic=sin sin B: sin C となることを利用する. (2) 2番目に大きい角は、2番目に長い辺の材類である。(辺と角の大小川県) a より (1) 正弦定理 sin C sin B sin A a:b:c=sinA : sin B: sin C 条件より, sin A: sin B: sinC=13:8:7 a:b:c=13:8:7 したがって, cos B= となり, a=13k, b=8k,c=7k(k>0) とおける.aa:bic が定まる よって、余弦定理より, cos C= cos B= だから, よって, 11 22 13 26' 222=484, 6²+c²-a²_(8k)²+(7k)²-(13k)² 2bc 2.8k 7k c²+ a² − b² _ (7k)²+(13k)²-(8k) ² 11 - 2ca 2.7k 13k sin C 13 ¸a²+ b² −c² _ (13k)²+(8k)²—(7k)² __ 23 = OST 26 082.13k-8k 2ab A (2) (1)より,a>b>cであるから、2番目に大きい角は Bである. = 7 sin C DELA ARSA 正弦定理 C =2R より, cos B < cos 30° B> 30° cos 30°: これより, a:b: が成り立っている。 PORTS = (13√3)=507 /3 13√3 2 26 0e=" 2 == a sin A sin B sin C a:b:c=sinA: sin B: sin C で, 00-808- ASEANCA より、 けで大きさは定ま ない。この比率を とおく. A ~8k 7k B 13k 辺と角の大小関係 (p.425 参照) y -1 例題 3 (1 考えた 0 [11 30% cos B cos3 sin B sin C sin=2R より a=2RsinA,6=2Rsin B, c=2RsinC 解

未解決 回答数: 1