学年

質問の種類

数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

回答募集中 回答数: 0
化学 高校生

(1)と(2)の解説をお願いしたいです

問1 次の各問いに答えよ。 原子量は、H=1.0、C=120=16 とする。 図に示すように、ピストンにより容積 が変わるシリンダーA がコックのついた 管で容器 B とつながった装置があり、 装 置全体の温度を一定に制御できる恒温槽 に入っている。 シリンダーAには質量a[g]のメタン (気 体)が、容器 B には質量 5a[g]の酸素(気 体) が入っている。 ピストンが初期位置に Cata 16 容器 B シリンダー A コック |ピスト ピストン メタン 酸素 a [g] 5a [g] 管 P あるときコックは閉じており、シリンダーAと容器Bの容積はともに Vo[L]で等しく、温度もともに絶対 温度で To [K] である。このときのシリンダーA内の圧力を PA [Pa] とする。 気体はすべて理想気体とし、 管 の容積は無視できるとする。 (1) ピストンが初期位置にあるとき、 容器B内の圧力 [Pa] をシリンダーA内の圧力 PA を用いて表せ。 (2) ゆっくりとピストンを押し込み、 シリンダーAの容積を Vo/4 [L] とした後に、コックを開けてしば らく放置したところ、 メタンと酸素は反応せず互いに速やかに混合し、 その後装置内部の温度は To で 一様となった。このときの装置内のメタンの分圧 [Pa]を、 PAを用いて表せ。 (3) (2) の操作の後、 ピストンを固定して適切な方法で装置内のメタンを完全に燃焼させた。このときの 化学反応式を記せ。 (4) (3)の後、しばらく放置した後に装置内の温度が再び To となったとき、 容器内に液体の水が存在し た。 このときの装置内の全圧 [Pa] を PA を用いて表せ。 ただし、 温度 To での水の蒸気圧は、 0.10PA と する。 また、水蒸気の凝縮を除いて装置内の気体は水 (液体) へ溶解しないとし、温度変化によるシ リンダーAと容器 B の容積変化、および水 (液体)の体積は無視できるとする。

回答募集中 回答数: 0