学年

質問の種類

物理 高校生

高校物理 電気の問題です (5)で静電エネルギーの変化を見る時合成容量から求めてはいけないのでしょうか 合成容量から求めたら答えが変わったのですが、計算ミスなのかどうかがわかりません

17-7700 E2 701 位差を求めよ。 (3)続いて, S2 を開き, S, を閉じた。 十分に時間が経過した後, S, を開きSを閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2の両端の電位差はある有限な値に近づく。 その値を 求めよ。 〔17 大阪市大〕 113. 〈ダイオードを含むコンデンサー回路とつなぎかえ〉 図に示す回路において, ダイオード1および ダイオード2は理想的な半導体ダイオード (順 方向電圧が加えられたときの抵抗値は 0, 逆方 向電圧が加えられたときの抵抗値は無限大) と みなせる。 電池1および電池2の起電力はいず れも E[V],コンデンサー1およびコンデンサ 2の電気容量はそれぞれ C〔F〕 および 2C[F], 抵抗器の抵抗値は R [Ω] である。電池 コンデンサー 1 d ダイオード 1 コンデンサー 2 抵抗器 e 電池 1 木ダイオード 2 S b 電池2 の内部抵抗および導線の抵抗は無視でき, 回路から放射される電磁波はないものとする。 コンデンサー1およびコンデンサー2に電荷が蓄えられていない状態でスイッチSをa側 に入れ、十分に時間を経過させた。 このときの (1) 点c, 点d, 点eの電位 [V] をそれぞれ求めよ。 (2) コンデンサー1およびコンデンサー2に蓄えられた静電エネルギー [J] をそれぞれ求め よ。 次にスイッチSをa側から離してb側に入れ,十分に時間を経過させた。このときの, (3) コンデンサー1の点d側の極板に蓄えられた電気量と, コンデンサー2の点d側の極板 に蓄えられた電気量の和 〔C〕 を求めよ。 (4) コンデンサー1およびコンデンサー2に蓄えられた電気量 〔C〕 をそれぞれ求めよ。 5) スイッチSをb側に入れた瞬間から十分な時間が経過するまでに抵抗器で消費されたジ [ュール熱 〔J] を求めよ。 [24 芝浦工大] .B 114. 4枚の導体板によるコンデンサー回路> 応用問題 次のア~ス、ソ~チの中に入れるべき数や式を求めよ。 また,セに当てはま 文章を解答群から選べ。ただし、数式はC,V,dのうち必要なものを用いて答えよ。

回答募集中 回答数: 0
生物 高校生

生物の遺伝子です。(4)が全く分かりません!どうやって解くんですか!教えてください🙏🙏

○ 独立と連鎖 6 独立と連鎖 ... 同じ遺伝子座の対立遺伝子4組に着目し,それらをAa, Bb, Ee, Ff と表記するものとする (A, B, E, F は顕性遺伝子, a, b, e, fは潜性遺伝 子)。顕性のホモ接合体と潜性のホモ接合体を交配して F をつくり,さらに,この F」を検定交雑して得られた子について一部の表現型を詳しく調べたところ, 次の分 離比であることがわかった。 Aa と Bb の組み合わせについては, [AB]: [Ab]: [aB]:[ab] Bb と Ee の組み合わせについては, [BE]:[Be]:[bE]:[be] Aa と Ee の組み合わせについては, [AE]:[Ae]:[aE]:[ae] - = 3:1:1:3 9:1:1:9 = 17:33:17 Aa と Ff の組み合わせについては, [AF]: [Af]: [aF]: [af] = 1:1:1:1 at to (1) ① Aa と Bb, ② Bb と Ee, ③ Aa と Ee, ④ Aa とFfの組み合わせについて, それぞれの組換え価を求めよ。 (2) ① Bb と Ff, Ee と Ff の組み合わせについて, 組換え価はそれぞれどうなるとB 予想されるか。 = (3)遺伝子 Aa, Ee, Ff の中で,遺伝子 Bb と, ① 連鎖しているもの, ② 独立してい 4EF るものはどれか。 それぞれすべて答えよ。 (4) F,個体どうしをかけあわせた場合に生まれる子の Aa と Bb の組み合わせについ て,表現型の分離比[AB]: [Ab]:[aB]:[ab] はどうなるか。 41:7:7:9 [20 関西学院大] AE F

回答募集中 回答数: 0
英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0