学年

質問の種類

数学 高校生

数列です。一番最後の問題って単にnについての不等式だとみてそれを解けたりとかできないですよね?回答お願いします。

●2等比数列・ (ア) a, b, cは相異なる実数で, abc = -27 を満たしている.さらに,a,b,cはこの順で等比数 列であり, a,b,c の順序を適当に変えると等差数列になる.a,b,c を求めよ. (宮城教大) (イ) 初項と第2項の和が135で,第4項と第5項の和が40である等比数列{a}の公比は である.ただし各項は実数とする.また,初項が84で,初項から第5項までの和が290である等 ]である.これら2つの数列{a}, {bm}に関して,an>by が成り立つ 差数列{6} の公差は 最小のnの値は である. C (東京工科大・メディア) a, b, c がこの順に等差数列 bn 3項が等差数列, 等比数列になる条件 であるときa+c= 26, また, x, y, zがこの順に等比数列であるとき, πz=y2 が成り立つ (b-a=c-b; 等差数列・等比数列の大小 π:y=y:zより分かる). {a} が等差数列, {bm} が等比数列 (公 比は正)のとき, (n, an) は直線上, (n, bm) は指数関数のグラフ (下に 凸) 上に乗る. 等差数列, 等比数列の各項の大小はグラフを描くと様子 がはっきり分かる. (右図のように, 2交点の間では, 等差>等比) 解答 (ア) a, b, cはこの順で等比数列だから, ac=62 これとabc=-27より, 63-27 ∴.b=-3 cをαで表して, (a, b, c) = (a, -3, 9/α) ..ac=9 以下, 等差数列の条件を考える. 中央項がどれになるかで場合分けする. 9 a 9 2°a+==2(-3) 1° -3+-=2a 9 3° α+(-3)=2• a 1° のとき,2a2+3a-9=0 . (a+3) (2a-3)=0 a = bよりα キー3だから, a=3/2 ..c=6 2°のとき,a2+6a+9= 0 .. α=-3 これは α = 6に反する. 3°のとき, α2-3a-18=0 ∴ (α+3)(a-6)=0 以上から, (a,b,c) = (3/2, 3, 6), (6, -3, 3/2) (イ) {a} の初項をα 公比をとおくと, an=arn-1 a1+az=a+ar=α(1+r)=135 astas=ar3+ara=ar3(1+r)=40] a=6 12 \3 27 82 2|3 123 an 中央項がα, b, c で場合分け. 1° は αが中央項で, b+c=2α と なる. 2° はんが中央項, 3° はc が中央のとき. α=6のとき,c=9/6=3/2 [(イ) 後半の方針] > b は解 ... ける不等式ではない。最小の を求めたいので, n=1,2, … から 順に調べていくのが早い.なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる. より3= ar3(1+r) 40 a (1+r) 135 よって,r=" a=. 2 3' 135 135 -=81 1+r 5/3 b1+65 84+ (84+4d) {6} の公差をd とおく. b1 ~ 65 の和=- ・5= ・・5 が 290 Y 2 2 なので, (84+2d) ・5=290 2\n1 .. 42+d=29 .. d=-13 -y=97-13x y=810 a1 an=-81-1 ·(323), b₂=84–13(n−1) n 1 2 3 4 5 6 7 32 64 an 81 54 36 24 16 3 9 と表よりan>bmとなる最小のnは7. bi b² b3 bbs be at az 03 Sasas b 84 71 58 45 32 19 6 01234567 46 67 48 2

解決済み 回答数: 1
数学 高校生

(2)です。僕の解き方でどこが間違っているか教えてください

c 2直線の交点を通る直線の方程式 2直線 x+2y-4=0, 2x-y-30 に対して, 方程式 k(x+2y-4)+ (2x-y-3)=0 ① の表す図形とは? ただし, kは定数とする。 k=1 k=0 k=2 ① は, 連立方程式 x+2y-4=0, 2x-y-3=0 2x-y-3=0 2 の解x=2, y=1に対して常に成り立つ。 k=-1 1. x=2, y=1は2直線上の点なので x+2y-4に代入しても0 2 4 x 2x-y-3に代入しても 0 -3 x+2y-4=0 よって, kがどのような値をとっても ①は, 2直線の交点(2, 1) を通る図形を表す。 x=2, y=1 を代入したら式が成り立つので ① を x, y について整理すると (k+2)x+(2k-1)y-4k-3=0 ここで,x,yの係数k+2, 2k-1は同時には0にならない。これは直線の式なので 方程式 ① は, 2直線の交点を通る直線を表す。 (図のように,kの値によって (21) を通る直線がいろいろ決まる) ただし, 直線 x+2y-4=0は表さない。 (式) = 0 の形で表された2直線について k(式1こ目) + (式2こ目) = 0 は,交点を通る直線である。 例8 2直線x+2y-4=0, 2x-y-3=0の交点と点(-1, 5) を通る直線の方程式は? を定数としてk(x+2y-4)+(2x-y-3)=0 とすると,①は2直線の交点を通る直線を表す。 この直線が点(-1, 5) を通るとすると, ① に x=-1, y=5を 代入して ゆえに 5k-10=0 k=2 これを①に代入して整理すると 4x+3y-11=0 ①のなかから,(-1,5) を通る 「当たり」 の直線を見つけている。 [終]

解決済み 回答数: 1
地学 高校生

地学基礎の地球の形と構造です。問15の解説の35°65'がどこから出てきたのか分かりません。教えてください至急お願いします🚨

A 6 (km) 地球の形は,実際には山や谷, 海嶺や海溝もあり、 完全な球体でもなければ回転楕円体 でもない。ここで, 地球の最高峰の高さが1万m, 海の最深部の深さが1万mであると する。 地球の赤道半径を5cm とすると,この高さの差2万mは何cmとなるか。 次の(ア) 〜(ケ)から選べ。 (ア) 0.15cm (イ) 0.16cm (ウ) 0.17cm (エ) 0.015cm (オ) 0.016cm (カ) 0.017cm (キ) 0.0015cm (ク) 0.0016cm (ケ) 0.0017cm (2013 桜美林大改) 指針 解説 (1) 面積の割 応している。陸地の標 さえておこう。 (2)陸地の平均標高が約840mである。 画面の位置はbであることがわかる。 面積に占める割合の小さい範囲で水深が している。 Bは海洋地域の最も水深の深い部 ・B 5 10 15 20 表面積に占める割合 [%] (オ) 海岸段丘 す図として正しいものを しだ距離が近いのは, 北極 方向と短軸方向の半径の 15 地球の大きさ 千葉市とつくば市は同じ経線上にあるとして, 千葉市の緯度を北緯 35°38′ つくば市の緯度を北緯 36° 5′ とすると, 千葉市とつくば市の地表面に沿った距 離は何km か。 小数第1位を四捨五入して答えよ。 ただし, 地球は半径6400km の完全な 球形として計算してよい。 なお, 1° (度)=60' (分)であるとし, 円周率は3.14 とする。 (2015 千葉大) 16 地球の内部構造 地殻, マントル, 核の体積比を表すグラフとして最も適当なものを, 次の (ア)~(エ)から選べ。 (ア) 地殻 (イ) 地殻 核 (ウ) (エ) 地殻 地殻 核 北緯45 北極 赤道 45° 核 核 マントル マントル マントル マントル 緯度差 でいるため、 緯度 赤 大 17 地球の内部構造 地球の平均密度は,地球全体の質量 (6.0×102g) と体積 (1.1× 10cm²)から求めることができる。 地殻とマントルを合わせた部分の体積を9.2×10cm3 平均密度を4.5g/cm とすると,核の平均密度は何g/cm か。 小数第1位を四捨五入して 答えよ。 (2015 センター) で す

解決済み 回答数: 1