学年

質問の種類

生物 高校生

よければ解説よろしくお願いします

[] 準 20. 遺伝情報とアミノ酸配列 6分 (a) DNA の遺伝情報はまず mRNAに転写され, タンパク質へと翻 訳される。 mRNAのコドンがどのアミノ酸を指定するのかについては, (b)大腸菌の抽出物を用いて,特 定の塩基配列をもつ合成 RNA から人工的にタンパク質を合成させる実験によって調べられた。 問1 下線部(a)に関する記述として最も適当なものを、次の①~④のうちから一つ選べ。 ①mRNAを構成するヌクレオチドの構造は、塩基にTではなくUが使われることを除き, DNA を 構成するヌクレオチドの構造と同じである。 見えている ②転写では,DNAの2本鎖の一方を鋳型としてmRNAが合成されるが,このとき鋳型とならなか ったほうの DNA 鎖が,合成された mRNAに対して相補的である。 ③ 呼吸に必要な遺伝子など,多細胞生物のさまざまな種類の細胞で共通して発現する遺伝子がある。 1番目 の塩基 3番目 ④ 多細胞生物では, ゲノムを構成する DNA のどの部分も, 一生のうちに一度は転写される。見るね。 問2 下線部(b)について, AとCだけからな るコドンでは, 表に示すアミノ酸が指定さ れる。 次の(1),(2)の塩基配列をもつ合成 RNA から合成されるタンパク質のアミノ 酸配列として最も適当なものを後の① ~⑤のうちからそれぞれ一つずつ選べ。 (1)AとCが交互にくり返された配列 (2) ACCA がくり返された配列 2番目の塩基 C A の塩基 CCC CAC ヒスチジン プロリン CCA M CAA グルタミン A ACC AC アスパラギン A トレオニン ACAされる AAA リシンA . ① くり返し配列にはならない。 ② 2種類のアミノ酸が交互に並ぶ。 0 0 ③③ 3種類のアミノ酸が決まった順に並び, それがくり返される。 ひと A 中文の内 ④ 4種類のアミノ酸が決まった順に並び、それがくり返される。 ⑤ 5種類のアミノ酸が決まった順に並び, それがくり返される。 問3 下線部(b)について、 次に示すくり返しの塩基配列からなる合成 RNA を用いたところ, 「アミノ酸 w-アミノ酸 x-アミノ酸y-アミノ酸w-アミノ酸z」のくり返し配列(・・・wxywzwxywzwxywz…)か らなるタンパク質1種類だけが合成された。 この場合, アミノ酸yとして最も適当なものを,後の ①~⑥のうちから一つ選べ。 ...AAAACAAAACAAAACAAAACAAAACAAAAC... 合成 RNAの塩基配列 ① プロリン ②トレオニン ⑥ リシン共 ③ ヒスチジン ④ グルタミン ⑤ アスパラギン ① [23 共通テスト追試 改 22 関西大 改] 第2章 遺伝子とそのはたらき 19

回答募集中 回答数: 0
数学 高校生

(2)の場合分けに関して L<0 すなわちX=0が最小値になる場合は考えないのでしょうか?

135 基本 例題 82 2次関数の係数決定 [最大値・最小値] (1) 00000 (1) 関数 y=-2x2+8x+k (1≦x≦4) の最大値が4であるように定数の値を 定めよ。 また、このとき最小値を求めよ。 (2) 関数 y=x^2x+2-21(0≦x≦2) の最小値が11になるような正の定数 の値を求めよ。 基本 77,79 重要 83 指針▷ 関数を基本形y=a(x-b)+Qに直し,グラフをもとに最大値や最小値を求め, (1) (最大値)=4 (2) (最小値) = 11 とおいた方程式を解く。 31 10 (2) では, 軸x=1(1>0) が区間0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小グラフの頂点と端をチェック 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)+k+8 y 最大 k+8 将 区 よい よって, 1≦x≦4においては, 右の図 から、x=2で最大値+8をとる。 ゆえに k+8=4 4 [0<b] 0/12 x ■区間の中央の値は 2 であ るから、 |軸x=2は区間 1≦x≦4 で 中央より左に ある。 最大値を=4とおいて, の方程式を解く。 よって k=-4 ●最小 このとき, x=4で最小値-4 をとる。 とか i (2) y=x2-2lx+12-21 を変形して y=(x-1)2-21 [1]02のとき, x=1で最小値 -27 をとる。 2l=11 とすると 1=- - 11 2 これはOKI≦2を満たさない。 [2] 2<l のとき, x=2で最小値 22-21・2+12-21 つまり 2-6l+4 [1] PA 軸 =J =+pe=3+68 [<<0] O 2 x -21 最小 tp 「Zは正」に注意 0 1 2 のとき, 軸x=lは区間の内。 [ɛ] →頂点x=lで最小。 の確認を忘れずに。 をとる。 [2] y -12-61+4 は上に 直線 -60+4=11 とすると 12-61-7=0 最小 I=0x 21のとき, 軸x=1は区間の右外。 x=2 で最小。 区間の右端 (Z+1)(Z-7)=0 これを解くとl=-1,7 0 2 X |軸 1)で 2 <lを満たすものは l=7 T=0 S- の確認を忘れずに。 以上から、 求めるの値は l=7 -21- x=(x) 文 30+x=(x)\

解決済み 回答数: 1
数学 高校生

何回も計算しても答えと合いません💦 どこが間違ってるか教えて頂きたいです… 27番の問題です!見にくくて申し訳ないです。

03k+21=0} ゆえに 12-t=k 1-2k+1=-7 これを解くと ES k=2,l=-3 ①を② に代入すると 1-4+3t = -4k ( ゆえに e=2a-36 よって -4+3t=-4(2-t) t=4 Point 16 座標と成分表示 (1) 28 A(a1, a2),B(b, b2) のとき ① 2 [1] AB=(b1-ai, b2-az) [2] [AB|= √(b2-a1)+(b2-az)2 25 Tei A(2, 1), B(6,3), C(4,-1) であるから AB=(6-2,3-1) = (4,2) 考え方 (2) がはtの2次式になるので、 平方 成して最小値を調べる。 1620 より かが最小のときも最小となる (1) b=a+b=(6,-2)+(0, 2) = (6, 2t-2) 62+ (2t-2)^ = 102 Point 16 [1] ||=10 より (S) また |AB| = √4°+2° =2√5 -Point 16 [2] t2-2t-15 = 0 (t+3)(t-5)=0 また また BC=(4-6, -1-3) = (-2,-4) |BC|=√(-2)+(-4) = 2/5 CA =(2-4, 1-(-1)) = (-2, 2) |CA| = √(-2)^+ 2 = 2√2 よって t = -3,5 (2) n2=62+ (2t-22 = 4t2 - 8t +40 =4(t-1)2 +36 ―平方完 26 したがって, t=1のとき, がは 36 をとる。 点の座標を(x, y) とすると,AD=BC で あるから (x-1), y-1)=(7-4, 2-4) よって x+1=3, y-1=-2 ゆえに x=2, y=-1 したがって D(2, -1)=1+ Level Up レベルアップ 27 (1) 考え方 + to を成分表示し, ベクトルの平行条件 を利用する。 a+tb=(2-4)+t(-1,3) =(2-t, -4+3t) (a+tb) // c であるから,実数を用いると このときも最小となり,最小値 √36 = 6 よって t=1のとき 最小値 6 29 考え方 ひし形の対角線は角の二等分線に から OA, OB それぞれと同じ ベクトルの和を考える。 |A| Fy B(-6, 2) =√12+(-3)2人 √10 3&OB =√√(-6)+2 = 2√/10 a+tb = kc _c = k(a+tb) よって、∠AOB の よって (2-t, -4+3t) = k(1, −4)** も計算しやすい 二等分線と平行であるベクトルは 用いて =(k, -4k) (E)

解決済み 回答数: 1
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本 例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=191-4.9P(m)で与えられる。この運動について次のものを求めよ し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) 10 cm (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ただ p. 314 基本 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。 (んの変化量) (tの変化量) を計 算。 (イ)2秒後の瞬間の速さを求めるには 2秒後から2+6秒後までの平均の速さ 均変化率)を求め, 6 → 0 のときの極限値を求めればよい。 つまり、微分係数 f'(2) が t=2 における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 t=5 における微分係数 f' (5) である。 taから6まで変化す (1) (ア) (49.2-4.9.22)(49・1-4.9.12) 2-1 =34.3(m/s) 解答 (イ) t秒後の瞬間の速さはんの時刻 t に対する変化率 るときの関数f(t)の平 変化率は f(b)-fla dh b-a である。 hをtで微分すると =49-9.8t dh dt については,下の dt (1)-9 求める瞬間の速さは, t=2として 注意 参照。 '=49-9.8t 49-9.8・2=29.4(m/s)=p (2) t秒後の球の半径は (10+t) cm である。 と書いてもよいが, 3 t秒後の球の体積をVcm とするとV=1(10+t dV 4 V を tで微分して dt dv=7.3 ・3(10+t)2・1=4z(10+t) 求める変化率は,t=5として 4(10+5)=900(cm²/s) と書くと関数を 微分していることが式か ら伝わる。 { (ax+b)"}' =n(ax+b)"' (ax+b) 変数が x,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え dh d ば、関数=f(t) の導関数はf(t), dt' dt f(t) などで表す。また,この導関数を求め ることを,変数を明示してh を tで微分するということがある。

回答募集中 回答数: 0
数学 高校生

解の公式の形において2枚目の3問目の様に3つとも約分可能でなければ約分してはいけないのでしょうか 2枚目の追加画像は分母「2」と分子「4」と「1」なので約分せずそのままなのでしょうか

15:56 6月10日 (月) detail.chiebukuro.yahoo.co.jp その他の回答 (2件) tytytyさん 2010/6/24 15:43 約分ってのは 分子と分母に同じ数で割ることなので (1)の分子は (9±√/21)で分母は6ですね なので仮に3で約分 (3で分子と分母を割る)すると 分子は (9±√21)÷3 となりさらに分数ができてしまいます。 よって (1) は約分できません。 同じように(2)も約分できません。 しかし解答が約分してあるなら 5/4(2√/23)/4と分けて 5/4±(√23)/2とするしかありません。 参考になる 1 men********さん ありがとう 感動した 面白い 0 新しい順 51% 2010/6/24 15:34 あなたの意見の「3つとも約分可能でなければ約分してはいけない」は正解です。 【2】 の約分は出来ません。 約分するのであれば、分母を2つに分けて 5/4(2/23)/4と分ければしてもよいです。 解答が間違っているか、5の部分が、 別の偶数だったりするのではないでしょうか。 参考になる ありがとう 感動した 0 0 0 あわせて知りたい ④ TOYOTA ふさがりがち。 自動開閉がうれしい! SIENTA 家族で笑った! シエンタ! トヨタ自動車株式会社 面白い

解決済み 回答数: 1