学年

質問の種類

生物 高校生

(2)(3)の単位変換の仕方、考え方がわからないです

知識 46 いろいろな生物のDNAについて, 次の問いに答えよ。 表1はDNAを構成する4種類の塩基の数の割合を測定した結果である。また,表 2はコイ, ニワトリ, ウシの細胞1個当たりのDNA量を測定した結果である。 表1 DNA を構成する塩基数の割合(%) A 表2 細胞1個当たりのDNA量 〔ピコグラム(10-12g)] T G C コイ ニワトリ ウシ トリ結核菌 15.5 14.3 36.4 33.8 肝臓 3.3 2.66 7.05 大腸菌 24.7 23.6 26.0 25.7 すい臓 2.61 7.15 コムギ 27.4 27.1 22.7 22.8 腎臓 2.28 5.90 サケ 29.7 29.1 20.8 20.4 赤血球 3.5 2.58 = ヒト 30.9 29.4 19.9 19.8 精子 1.6 1.25 3.42 (1) 表1の結果から考えられることを説明文 A~Dの中から選び、 適切な説明文の組 み合わせを、次の(ア)~(カ)の中から1つ選べ。 A 生物種が異なってもおおむね A:T = 1:1,G:C = 1:1である。 B 生物種が異なるとAとT,GとCの比はそれぞれ異なる。 C DNA分子は1本の鎖の中でAとT, GとCが隣りあって結合している。 ne) D 生物種が異なるとDNAに含まれる塩基の構成比は異なる。 (ア) A, B (イ) AC (ウ) AD (エ) B,C (オ) B, D(カ) C,D 4 (2) ヒトの体細胞のDNAをつなぎ合わせるとその直線距離はおよそ2mになるとい われている。 染色体1本当たりのDNAの平均の長さとして最も適切なものを次 (ア)~(カ)の中から1つ選べ。 (ア) 4.3μm (イ) 8.7 μm (ウ) 4.3mm (エ) 8.7mm (オ) 4.3cm (カ) 8.7cm (3) 二重らせん構造をもつDNAはヌクレオチド10対で1回転し、 1回転したときの DNAの長さは3.4 × 10mである。 ヒトの体細胞1個当たりのヌクレオチドは およそ何個あると考えられるか。 最も適切なものを次の(ア)~(オ)の中から1つ選べ。 (ア)4.0 × 10°(イ) 7.2 × 10° (ウ) 1.2 × 101 (エ) 2.4 × 1012 (オ) 6.0×1023 (4) 表2の結果から考えられることを説明文 A~Dの中から選び、 適切な説明文の組 み合わせを,次の(ア)~(カ)の中から1つ選べ。 A DNA量は動物種が異なっても組織や器官において差がない。 B 同じ動物であれば組織や器官が異なっても体細胞中のDNA量はほぼ同じである。 C DNA量が多ければ染色体の本数が多いと考えられる。 N D 精子は減数分裂を経てできるため, DNA量は体細胞の1/2になる。 (ア) A, B (イ) A, C (ウ)A,D (エ) B, C (オ) B, D (カ) CD (5) あるDNAでは4種類の塩基のうちAが23%を占め, またこのDNAを構成する 2本鎖(H鎖とL鎖)のうち, H鎖だけで見ると4種類の塩基のうちAは40%, C [ 東京農大 改] は15%であった。 H鎖におけるTとGの割合を求めよ。

回答募集中 回答数: 0
数学 高校生

この問題について3つ質問があります!1つ目は、解答の(1)はどのような発想から来ているのかについてです。2つ目は、(2)が解答とやり方が違ったのですが、合っているか見て欲しいです!3つ目は、手書きの紙の②の式で、p、qが両方奇数だと、3pqの二乗が奇数になり、右辺と左辺で偶... 続きを読む

4p3+3pg2-8q30 . 892 =42+3q2 P ③の右辺は整数だから左辺も整数である。これとは互いに素により は8の正の約数つまり 1,2,4,8 のいずれかである.以上から 1 1 a = 1,2,4,8, 2'4 -の可能性しかない。しかしこれらを実際に①に代入 しても成立しないことがわかるので, a は有理数ではない。 す、す を nπ 43-17 整数係数の次方程式の有理数解 3次方程式 有理数・無理数 165 165 +1- VV 64 VV 64 -1 とする. 次の問に答えよ。 (1)は整数を係数とする3次方程式の解であることを示せ. (2)a は有理数でないことを証明せよ。 アプローチ (1)でするべき作業は (v)(v) 2)です。 (弘前大 です.つまり, 有理化 ( 有理数についてはを参照してください。 (2)は,(1)でa を解にもつ方程 式を求めているので, その方程式が有理数解をもたないことを示せばよいで しょうここで背理法を用いるのはと同じです。 =120-83=2 の 解答 65 65 (1)g= VV 64 +1,β=3 -1とおくと V64 0° P ☐ 65 a=α-β, aβ = となる. これを -1= へ代入して 2=a³+3a 64 4' α3-β3=(α-B)3+3aβ(a-β) 4a³ +3a-8=0 よって, a は 4x3+3x-8=0の解である. 9 ① ☐ (2)が有理数であると仮定するとa 0だから(ただし pq は互 いに素な自然数) とおける ① に代入すると P3 +3 4.- +3.P-80 9 4p3 =-3pq+8q2 9 2 ②の右辺は整数だから左辺も整数である。これとp, q は互いに素によりq は4の正の約数つまり 1,2,4のいずれかである。さらに②から (フォローアップ 1.整数係数のn次方程式 ax” +... +b=0を解くとき, x=± (aの約数) を代入し解をみつけて因数分解しているでしょう.それは直感的にいえば、 ax"+... +b=(○x-△)・・・・・ (Ox-△) と因数分解できたなら○の積は (bの約数) a,△の積はb になるはずで、だから有理数解は±=± (bの約数) PICCOLLAGE

回答募集中 回答数: 0
国語 中学生

答えがなくて困っています。 このテキストの6-9、14-17、18-21の答えがあったり分かったりすれば教えて欲しいです。

17 下一段・下二段 150 50 堪へ (3) (1) 動詞 ③ 16 ①まう 文献にも このようなことは、 かうし 2 反復学習で確認 1 次の傍線部①~⑤の動詞について、それぞれの活用の行種類と活用 書きなさい。 (こよなくやつれてのみこそ詣づと知りたれ。 この上なく粗末な格好で参詣するものだと(私は)知っている。 (かかることは、文にも見えず、 ③ 格子など上ぐるに見いだしたれば、 2 3点×3 (2) 〔枕〕 3 次の傍線部①~⑧のうち、下二段活用の動詞を四つ選んで番号を書き、 かつ活用の行と活用形を書きなさい。 [徒然] 〔徒然〕 蓮を 1 家にはちすを植ゑて愛せし時の楽なり。 → 賞玩した時に作った楽曲である。 〔方丈〕 〔蜻蛉〕 (1) 人数を知らんとて、四五両月を数へたりければ、 数えたところ、 亡くなった人の数を知ろうとして、 [方丈〕 〔宇治拾遺〕 さいしゅう 音に聞きめでてまどふ。 上げるので、外を見いだしたところ、 すまひ 4蹴よといひつる相撲に 蹴れと いった かぐや姫のうわさを聞いて恋い慕い、心を乱す。 積もり 消ゆる様、罪障にたとへつべし。 〔竹取〕 (4) (3) (雪が積もったり消えたりする様は、きっと人の(犯す)罪障にたとえられるだろう。 (竹取) 綱を引きすぐして網絶ゆるすなはちに、 なくなった瞬間に、 引っ張りすぎて 番号 活用の行 活用形 番号 活用の行 活用形 ● ラ行下二段活用・連用形 行 活用 形 形 サ行 終止 形 行 形 ② 活用 行 3 活用 行 行 行 形 行 形 ④ 行 形⑤ 活用 形 34点×4 行 活用 2 次の〔内の動詞は下一段、または下二段活用動詞ですが、いずれも 終止形で示しています。 それぞれを適切に活用させて書きなさい。 例 下よりきざしつはるに〔堪らずして落つるなり。 5×5 活用の種類や行が紛れやすい OKKEN すい (第2 下二段活用の動詞 〔徒然〕 う こころう ところう ま ま ま 木の下(内部)から兆しが芽ぐんでくるのに堪えられないで(木の葉が) ア行―得・心得・所得(三語) ザ行(交雑)ず(一語) だいこくでん 1 大極殿に行きてこれを〔ける]。 〔古今著聞〕 かな ひい うれ 大極殿に これを ダ行出づ奏づ・秀づ ハ行与ふ・憂ふ・数ふC かな さ ( しばし〔奏づ〕て後、抜かんとするに、おほかた抜かれず。 〔徒然〕 ヤ行ー甘ゆ・覚ゆ・消ゆ・聞こゆ・越ゆ・冴ゆ・萌ゆ・見ゆ 演じた後で、(鼎を頭から)抜こうとすると、 全く かなえ う う (3) ③ [飢う]ず、寒からず、風雨にをかされずして、徒然 ワ行ー植う・飢(餓)う・据う(三語) 飢えることなく、寒くなく、 冒されることもなく、 tintetise( 3 文章問題で定着 50 50 ※ ●語注 どこでもよい、 しばらくの間 いづくにもあれ、しばし旅立ちたるこそ、目さむる心地すれ。そのわたり、ここかしこ見ありき、田舎びたる 目がさめるような(新鮮な)気持ちがする。そのあたり、 見てまわり、 見慣れないことばかりが 多い。 所、山里などは、いと目馴れぬことのみぞ多かる。都へ便り求めてやる。 「そのこと、かのこと、便宜に忘るな。 ふみ ※びんぎ つてを求めて (その手紙に 都合のよい時に忘れるな。」 などと言い送るのは おもしろい。 そのような旅先でこそ、 など言ひやるこそをかしけれ。さやうの所にてこそ、よろづに心づかひせらるれ。持てる調度まで、よきはよく、 何事につけても自然と心遣いがされるものだ。 持っている道具類まで、 芸能のできる人や容貌のよい 能ある人、かたちよき人も、常よりはをかしとこそ見ゆれ。 P 36 ° いつもよりは興趣深く 見えるものだ。 〔徒然草・一五〕 KG 問 次の語はすべて下二段活用の動詞です。 活用表を完成させなさい。 基本形語幹行 未然形 連用形 終止形 連体形 已然形 命令形 萌ゆ ※いづくにもあれ「あれ」はラ 変動詞の命令形。 命令形の許 容・放任の用法。 ※便宜─「べんぎ」ではなく「び んぎ」と読む。都合のよい時・よ い機会、便り・手紙などの意。 能ある人ここは、芸事の能 力がある人の意。 問二 二重傍線部①~⑤の動詞について、活用の行・種類と、文中での活 用形を答えなさい。 おと ①さむる ②目馴れ ③求め ④忘る ⑤見ゆれ ふ う 失す ひい 秀づ ⑤ ③ ① さだ 定む に 逃ぐ ( 46 問三 読む 右の文章における作者の主張が最も端的に表れた一文を抜き出 して、その最初の五字を書きなさい。 6点

未解決 回答数: 0