学年

質問の種類

数学 高校生

数IIの軌跡と方程式の問題です 青色のマーカーの「逆に」という部分が どこから導き出せたか分かりません 2問同じところで分かりません 教えてください🙏

られた条件を付 を求める 本 例題 98 曲線上の動点に連動する点の軌跡 ののののの 点Qが円x+y=9 上を動くとき、点A(1,2)とを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 p.158 基本事項 CHART & SOLUTION る。) ものを除く 連動して動く点の軌跡 9 点Pが 。 s2+t2=9 1・1+2s x= 2+1 1+2s y= ラ 3 2+1 よって S= ラ -31-1,1-31-2 t=3y-2 つなぎの文字を消去して,x だけの関係式を導く ****** 動点Qの座標を(s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し,P,Qの関係から, s, tをそれぞれx,yで表す。 これをQの条件式に 代入して, s, tを消去する。 3章 解答 Q(s, t), P(x, y) とする。 Qは円x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 13 YA 3 軌跡と方程式 ① (s,t) 1.2+2t 2+2t A (1,2) 13. 0 x 3 2 こんに内分 P(x,y) -3 .y) これを①に代入すると3x21)+(3v=2)=9 つなぎの文字 s, tを消 2 2 9 ゆ x- + V =9 4 3 + melli 去。 これにより,Pの条 ugetug件(x,yの方程式)が得 られる。 よって(x-/1/3)+(y-2/28)2-4 =4 ***** (2) 以上から、 求める軌跡は 中心 (1/3 2/23 半径20円 P(y)とがいて POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるからf(s, t) = 0 したがって,点Pは円 ②上にある。 逆に円 ②上の任意の点は、条件を満たす。 上の図から点Qが |円 x2+y2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない かなを満た妨方程式で導いたのだから、Pはその方程式の ・表札・図形 ほあ ② s, tをそれぞれx, yで表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

回答募集中 回答数: 0
化学 高校生

問4が分からないのですが、ノートのように2.89×100が誤りな理由を教えて頂きたいです。よろしくお願いいたします。

13. 弱酸 次の文を読んで、 以下の問1~5 に答えよ。 ただし, pHの値は小数第2位まで, その他の値 は有効数字2桁で求めよ。 必要ならば次の値を用いよ。 log10 1.7 = 0.23, log10 2=0.30,log107=0.85,√9.7=3.1, √97=9.8めに、次の 水のイオン積 Kw=1.0×10-14 (mol/L) 2 水酸化ナトリウム 0.17 mol を溶かして 1Lとした水溶液Aと,酢酸 0.17 mol を溶かして1 プレイン溶液を2 Lとした水溶液 B がある。 水酸化ナトリウムは水中で完全に解離するが,酢酸は水中で一部だ けが次式のように解離し,その酸解離定数は 1.7×10mol/L である。 を愛した。 CH3COOH CH3COO + H+ を2,3 問1 水溶液のpHを求めよ。 さらにひ〔mL]の塩酸 問2 (1) 水溶液Bの酢酸イオン濃度 [CH3COO] [mol/L] を求めよ。 (2)水溶液 B のpHを求めよ。 (3)水溶液 Bを17000倍に希釈した水溶液のpHを求めよ。 問350mLの水溶液 B に, ある量の水溶液Aを加えた結果, 混合水溶液中の [CH3COOH] と [CH3COO] の比が1:1となった。 この水溶液のpHはいくらか。 また, 加えた水溶液 Aの体積〔mL] を求めよ。 ◎ 問4 100mLの水溶液 B に, ある量の水溶液 Aを加えた結果, 混合水溶液のpHが5.23 と なった。 加えた水溶液 A の体積 〔mL ] を求めよ。 問5 水溶液 A を水溶液 B で完全に中和した。 このときの水溶液のpHを求めよ。

回答募集中 回答数: 0
物理 高校生

①、②共に分かりません。つり合いの力の向きだけ分かったのですが、その後の計算からまったくわかりません。教えていただきたいです。

と、 フックの法則 30N 20 N 選 「F=kx」 から, ばね ① 基本例題17 剛体のつりあい 基本問題 139 141 立 図のように、なめらかな壁と摩擦のある床に,一様な太さの棒を 立てかける。棒と床のなす角を0 棒の重さをW,棒の長さをLと する。ない2分の合成を作用 立 L 指針 棒が受ける力を図示し, 剛体のつり あいの条件を用いて式を立てる。 (2)では,棒が 倒れないために, 棒が床から受ける摩擦力が最大 摩擦力以下であればよい。 SMO 解説 N₁ (1) 棒は,重力以外 HO に接触する他の物 体から力を受ける (図)。 mo LsinO N2 (1)棒が壁と床から受ける垂直抗力の大きさをそれぞれ求めよ。 (2) 棒が倒れないための0の条件を, tan0 を用いた式で表せ。 た だし, 棒と床との間の静止摩擦係数をμとする。 100モーメントのつりあいから NxLsino-wx/cos0=0 2 W 2 tan 0 鉛直方向の力のつりあいから、 N₂=W > N2-WN2=W> (2) 水平方向の力のつりあいから, 日 N₁ = B E 会 F-N₁=0 地球から・・・ 重力 W 壁から... 垂直抗力 N 床から・・・垂直抗力 N2 床から・・・静止摩擦力F W F=N= ...D 2tan0 W 0棒が倒れないためには,点Aで棒がすべらなけ AF L coso 2 Lsino, 1/2/cos 点AからN, Wまでのうでの長さは, それぞれ L こればよい。 F が最大摩擦力μN2 以下となり, FN2=μW ...② 式① ② から. W -cos0 となる。 点Aのまわりの力の 1 ≤μW tan 02- 2 tan 2μ

回答募集中 回答数: 0