学年

質問の種類

数学 高校生

この問題で、D>0だけの条件で解けると思ったのですが、なぜyの範囲を考えなければならないのか教えて頂きたいです。 交点を持つ時点でyはこの範囲でしか有り得ないと思って解いていました。 分からない点が伝わりにくかったら申し訳ないです💦宜しくお願いいたします。

ER 111 楕円と放物線が4点を共有する条件 重要 例題 62 00000 % X 楕円x2+2y²=1と放物線y=2x² +α が異なる4点を共有するための,定数aの 12/16× 値の範囲を求めよ。 数学 基本 125 指針 2次曲線どうしの共有点の座標も, その2つの方程式を連立させ て解いたときの実数解であることに, 変わりはない。 楕円x2+2y2 = 1, 放物線y=2x2 + α はどちらもy軸に関して対 称である。よって、2つの曲線の方程式からxを消去して得られ るyの2次方程式の実数解で- √2 √√2 2 2 <y< の範囲にある1 つのyの値に対して、xの値が2つ、すなわち2つの共有点が 対応 することに注目。 ......... x2+2y2=1, 4y=2x2+αからxを消去して整理すると 4y2+4y-(a+2)=0 ...... ① √2 <y<√2 x=1-2y2≧0から 与えられた楕円と放物線はy軸に関して対称であるから、2つ 図の曲線が異なる4つの共有点をもつための条件は、 ① が _√2 <<- で異なる2つの実数解をもつことである。 2 √√2 2 ·Sys. 2 よって, ① の判別式をDとし, f(y)=4y²+4y-(a+2) とする と,次の [1]~[4] が同時に成り立つ。 [1] D>0 [2] √(√2) >0 [3] √(√2) >0 [4] 放物線Y=f(y) の軸について <-1² << ¹ 2 √2 √2 2 ****** [1] 12/1=2°-4・{-(a+2)}=4(a+3) D> 0 から a+3>0 よって [2] 20から2√20 ゆえに a<-2√2 [3]>0からa+2√2 > 0 a> -3 ...... ② a<2√2 [4] y=-/1/2 は-<-1/くを満たす。 √2 √2 2 2 ②~④ の共通範囲を求めて -3<a<-2√2 y -10 a <x²=1-2y2 を 4y=2x²+αに代入する。 + 左の解答では、 数Y=f(y) のグラフが 2次関 <y<2でy軸と √2 異なる2つの共有点をもつ 条件と読み換えて解いてい る (このような考え方は数 学Ⅰで学んだ)。 2y (検討) ① を4y²+4y-2=α と変形 し、 放物線Y=4y²+4y-2 と直線Y=α が異なる2つ の共有点をもつαの値の範 囲を求めてもよい。 2章 7 2次曲線と直線

回答募集中 回答数: 0
数学 高校生

PHの長さが絶対値となっていますが、xは0以上なのになぜ絶対値を付けるのでしょうか??

G x 例題Ⅰ 放物線の定義 x軸上の点F(1, 0) からの距離と直線 x = -1 からの距離が等しい点P の軌跡を求めよ。 △△ 思考プロセス 例題 2 4 段階的に考える 数学ⅡIで学習した軌跡の問題である。 《Action 点Pの軌跡は, P(x,y) とおいてx,yの関係式を導け AY 軌跡を求める点Pを(x,y) とおく。 2② 与えられた条件をx,yの式で表す。 PF = PH → x, y の式で表す。 ③3 2② の式を整理して, 軌跡を求める。 点Pの座標を(x,y) とおくと PF=√(x-1)^2+y2 点Pから直線 x = -1 へ垂線PH を下ろすと, H(−1, y) であるから PH=|x+1| PF² = PH² よって (x-1)2+y2 = (x + 1)2 これを整理すると, 求める軌跡は 放物線 y2 = 4x PF = PH より 練習 1 (限定) x=-11 4y F -101 〔別解〕 定直線と直線上にない定点からの距離が等しいから, 点Pの軌跡は放物線であり、焦点はF(1,0), 準線は x = -1 である。 よって, この放物線の方程式は y2=4・1・x すなわち, 求める軌跡は 放物線 y2 = 4x OCH Point 放物線の定義 ++ P x -101 H 定点FとFを通らない直線からの距離が等しい点P(x,y) の 軌跡を放物線という。 また,点Fを放物線の焦点, 直線を放物線の準線という。 点F(p,0)を焦点、直線 x = -p を準線とする放物線の方程式 はy2=4px である。 ⅡB 例題107) x P(x,y) 2点間の距離の公式 点と直線の距離とは, 点 から直線に下ろした垂線 の長さである。 線 _ _ *PH* = \x+1|® = (x+1) 2 PH=|x−(−1| Point 参照 S 放物線の頂点は,焦点F から準線に下ろした垂線 FGの中点, 軸は直線FG である。 y'=4px F焦点 x P(x,y) SAN 点(20) からの距離と直線 x = 2 からの距離が等しい点Pの軌跡を求め 1 章 12次曲線

回答募集中 回答数: 0
数学 高校生

PHの長さが絶対値となっていますが、xは0以上なのになぜ絶対値を付けるのでしょうか??

G x 例題Ⅰ 放物線の定義 x軸上の点F(1, 0) からの距離と直線 x = -1 からの距離が等しい点P の軌跡を求めよ。 △△ 思考プロセス 例題 2 4 段階的に考える 数学ⅡIで学習した軌跡の問題である。 《Action 点Pの軌跡は, P(x,y) とおいてx,yの関係式を導け AY 軌跡を求める点Pを(x,y) とおく。 2② 与えられた条件をx,yの式で表す。 PF = PH → x, y の式で表す。 ③3 2② の式を整理して, 軌跡を求める。 点Pの座標を(x,y) とおくと PF=√(x-1)^2+y2 点Pから直線 x = -1 へ垂線PH を下ろすと, H(−1, y) であるから PH=|x+1| PF² = PH² よって (x-1)2+y2 = (x + 1)2 これを整理すると, 求める軌跡は 放物線 y2 = 4x PF = PH より 練習 1 (限定) x=-11 4y F -101 〔別解〕 定直線と直線上にない定点からの距離が等しいから, 点Pの軌跡は放物線であり、焦点はF(1,0), 準線は x = -1 である。 よって, この放物線の方程式は y2=4・1・x すなわち, 求める軌跡は 放物線 y2 = 4x OCH Point 放物線の定義 ++ P x -101 H 定点FとFを通らない直線からの距離が等しい点P(x,y) の 軌跡を放物線という。 また,点Fを放物線の焦点, 直線を放物線の準線という。 点F(p,0)を焦点、直線 x = -p を準線とする放物線の方程式 はy2=4px である。 ⅡB 例題107) x P(x,y) 2点間の距離の公式 点と直線の距離とは, 点 から直線に下ろした垂線 の長さである。 線 _ _ *PH* = \x+1|® = (x+1) 2 PH=|x−(−1| Point 参照 S 放物線の頂点は,焦点F から準線に下ろした垂線 FGの中点, 軸は直線FG である。 y'=4px F焦点 x P(x,y) SAN 点(20) からの距離と直線 x = 2 からの距離が等しい点Pの軌跡を求め 1 章 12次曲線

回答募集中 回答数: 0