学年

質問の種類

数学 中学生

【解答求】問4の解説お願いします。三枚目の写真については、多分間違っているとは思いますが自分なりに解きました。が、答えと照らし合わせながら解き、答えが出ただけでやみくもにやったのでこの式がどういった経緯でできているのか分かりません笑

右の図1のように, 高さが200cmの直方体の水そうの中に, 3つの同じ直方体が, 合同な面どうしが重なるように階段状に並んでいる。 3つの直方体および直方体と水 図 1 そうの面との間にすきまはない。 この水そうは水平に置かれており,給水口Iと給水 給水口Ⅱ I, 排水口がついている。 給水口 A 360:20th 200cm 360 D H G B E F C 排水口 18 図2はこの水そうを面 ABCD 側から見た図である。 点E, Fは,辺BC上にある直方体の 頂点であり, BEEF = FCである。 また, 点 G, H は, 辺 CD 上にある直方体の頂点であり, CG=GH=40cmである。 この水そうには水は入っておらず,給水口Iと給水口Ⅱ 排水口は 閉じられている。この状態から、次のア~ウの操作を順に行った。 図 2 A D 200cm 給水口のみを開き、 給水する。 水面の高さが 80cmになったときに、給水口I を開いたまま給水口 II を開き、 給水する。 ウ 水面の高さが200cmになったところで、給水口Iと給水口Ⅱを同時に閉じる。 # # # B E F H G40cm 40cm C ただし、水面の高さとは,水そうの底面から水面までの高さとする。 130分 10分 給水口Iを開いてからx分後の水面の高さを ycmとするとき,x と yの関係は,右の表の 表 ようになった。 x (分) 0 15 50 このとき、次の問いに答えなさい。 ただし、給水口Iと給水口Ⅱ, 排水口からはそれぞれ一定の割合で水が流れるものとする。 y (cm) 0 20 200 = 20のとき

回答募集中 回答数: 0
理科 中学生

理科の電流の単元です 電流が流れるときは回路ができていることを利用して 階段の照明の回路のしくみを調べる という実験なのですが 、 結果と考察の意味がわからなくて ... なぜ結果のようになるのかと 考察をもう少しわかりやすく教えてほしいです❕️🙏🏻

階段の照明の回路 れるときは回路ができていることを利用して、階段の照明の回路のしくみを調べる。 1 回路をつくる 切りかえスイッチを 接続する導線 を切りかえる をつくる。 ことができる。 電を逃したら、 がつけられないね。 葉の上の スイッチ 2のスイッチの つながり方を確かめる ②それぞれのスイッチの操作で豆電球をつけたり 消したりできるか調べる。 ③ 階段のの回路がわかったら、図に表す。 金属の板 階段の上と下のスイッチの間の回路のつながり方を図にす 切りかえ式スイッチ スイッチを手前にたおした ときの電流の流れ方の例 乾電池 豆電球 ? スイッチ 階段の上のスイッチ かきこみ エネルギー 1章 電流の性質 考察 階段の上下のどちらからでも、照明用の電球をつけたり消したりできるしくみはどのようなものと考えられるか。 ぶんせき かいしゃく 探究のふり返り 何を明らかにするのかを意識しながら、 実習 1 の結果を分析・解釈することができたか。 p.306

未解決 回答数: 1
数学 高校生

丸したところが,どうしてそのように言えるのかわからないので教えてください

478 重要 例 43 隣接3項間の漸化式 (3) n段 (nは自然数) ある階段を1歩で1段または2段上がるとき、 がり方の総数をα とする。 このとき, 数列{an}の一般項を求めよ。 この 指針 数列{a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから, n≧3のとき En段に達する 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する) [2] 1段手前 [(n-1) 段] から1歩上がりで到達する方法は の2つの方法がある。このように考えて,まず隣接 3 項間の漸化式を導く。 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, β が無理数を含む複雑な式となってしまう。 計算をら ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には、次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は(n-2) 段目まで の上がり方の総数と等しく 1=2 通り [1] 最後に1段上がる [2] 最後に2段上がる n (n-1)段 ここまでαn- 通り (n-2) (n-1)段 ここまで よって an=an-1+an-2 (n≧3) ...... (*) 和の この漸化式は,an+2=an+1+an (n≧1) … ①と同値である。 x2=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から比較 α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって X an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), a2-βa=2-β ...... a ... * 特性 ②から ③から an+1-dan=(2-α)βn-1 an+1-ßan=(2-β)α7-1 ...... (4) (5) ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β)an-1 ...... (6) 1-√5 a= 2, B= 1+√√5 であるから β-α=√5 よって、⑥から an= √5 また, α+β=1, a2=α+1, β2=β+1 であるから 2-α=2 (1-B)=B+1=8° 同様にして ((1+√5)-(1-√5)) 2-β=α2 1+√5)* -(1-√5)**) 次の条件 練習 ④ 43 次の条件によって定められる数列{an} の一般項を求めよ。 a=a2=1, an+2=an+1+3an an a Ad

解決済み 回答数: 1
数学 高校生

この問題の解説の意味がわかりません 立式する過程での理由っていうものがよくわかんないので教えて欲しいです。

478 重要 例題 43 隣接 3 項間の漸化式 (3) | がり方の総数を an とする。 このとき, 数列{an} の一般項を求めよ。 この 指針 数列 {a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから,n≧3のとき! 九段にする の2つの方法がある。 このように考えて,まず隣接3項間の漸化式を導く。 作 を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, βが無理数を含む複雑な式となってしまう。計算をらく ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい。 α=1, a2=2である。 解答のとき,段の階段を上がる方法には,次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-1 [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2 =2 フィオ いて、 あ ある 新た ま ろ 月末 とな 漸イ こ {a か ① [1] 最後に1段上がる [2] 最後に2段上がる n FX 九段 a (n-1)段 ここまで an-1 通り (n-1) 段 | (n-2) 段 ここまで2通り よって an=an-1+an-2 (n≧3) (*) 和の法則(数学 この漸化式は,n+2=an+1+an (n≧1)... ①と同値である。(*)でカード x=x+1の2つの解をα, β (α<β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 2-(1-x)=(- an+2-(a+β)an+1+aban = 0 よって an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), az-Ba=2-β ②から ③から an+1-aan=(2-α)B-1 an+1- -βan=(2-β)an-1 ◆特性方程式 x2-x-1=00 x= 1±√5 ...... a=1, al ◄ar"-1 ④ こ ...... ⑤ α+1 を消去 ④ ⑤ から (B-α)an=(2-α)β"-1-(2-β)α7-1 1-√√5 a= 2 B=1+1/5 2 であるから B-a=√5 また,α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-B)=B+1=2 2-B=a² 同様にして よって、⑥から an= 1 1+√5 \n+1 1-√√5 2 雪 次の条件によって定め 3 α,βを値に直す 12-a, 2-8 は、α,Bの値を 代入してもよい ここでは計算を ている。

解決済み 回答数: 1