学年

質問の種類

数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
数学 高校生

大問のなかで同じ文字を使う場合問題番号が違くても「'」をつけて区別した方がいいのでしょうか? (1)でBを使って(2)でもBを使うなど

338 第9章 整数の性質 応用問題 1 正の整数a,bに対してaをbで割った商をg,余りをとする.つ まりり a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ . (1) aとbの公約数をdとすると,dはbとの公約数でもある. (2) bとの公約数をd' とすると,d' はaとbの公約数でもある. (3) aとbの最大公約数ともとの最大公約数は一致する. コメ P るも 持つ る」 る持る数は素 数 精講 ユークリッドの互除法の 「核」 となるp336の(*) を証明してみま しょう.考え方としては, 「α ともの公約数」 と 「bとrの公約数」 が(集合として)一致することを示そうというものです.それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αとの公約数がdであるから, (Res) bog a=dA, b=dB (A, B は整数) とおける.このとき r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,)dはbとrの公 約数である. (2)との公約数がd' であるから, b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'q+d'R=d'(B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,d'はaとb の公約数である. αと6の公約数」は「brの公約数」と(集合として)一 致する.したがって,それぞれの最大公約数も等しくなるので、題意は示せ た.

未解決 回答数: 1
数学 高校生

至急数1の質問です!! 何故例題は別解のような解き方が出来るのに、practiceは別解のような解き方が出来ないのですか?? もし出来るのなら、practiceの別解の解き方を添付して欲しいです!よろしくお願いします

330 PR ③ 129 PR ⑤ 130 数学A 9x+4y=50 から 9x=50-4y すなわち ....... ① 9x=2(25-2y) 9と2は互いに素であるから, xは2の倍数である。 ① において, y≧1 であるから 25-2y≤23 よって 9x≦2・23=46 更に, x≧1 であるから 1≤x≤ 9 46 y= 方程式 9x+4y=50 を満たす自然数x,yの組を求めよ。 ② ③ から _50-9x 4 x=2,4 であるから, x,yがともに自然数となる組は (x, y)=(2, 8) 0<x<y<z であるから よって よって 1_11_1 xyz 2 ゆえに 11111_1_3 x xy 11 6 x 12/2+1/12/11/12/2=1/12 かつy<zを満たす自然数x,y,zの組をすべて求めよ。 xyz 2 y 12 4 y であるから ゆえに 4≦x<6 xは自然数であるから x=4, 5 [1] x=4 のとき, 等式は y=6のとき, ① は ①から よって y<8 yは自然数であるから y=5 のとき, ①は これはy<z を満たす。 1/1/1 2 yx よって 11 1 y ここで, 0<y<z であるから 1111_2 2 y これはy<z を満たす。 y ゆえに ゆえに y x 13 2 y=7のとき, ① は 1/3+1/ 7 これは条件を満たさない。 1_1_1 5 2 4 1 1 6 2 4 1 4 x x <6 y=5,6,7 24 11 y 2 1,1 8y 4<y<8 よって よって よって ...... ② ① z=20 z=12 2-1 2= 28 a b が互いに素で an がbの倍数ならば、 nは6の倍数である。 2 3 (a, b, nは整数) xの値の範囲を絞り込 む。 46 9 x=4のときは y=1/2で不適。 = 5.1...... 0<a<bのとき ba 条件4≦xを忘れずに。 +-+-+-+-+-+-+-+-+-12 = 21/01/ =+ y え x=4,x<y より 4<y 1_1 2 12 1-18 2 20 1_3 2 28 が自然数でない。 PR ② 131 (1) (2) PR ② 132 (1)B 右の また、 (2) Al hA A (3 AC 1次不定方程式の自然数解 日本 例題 129 等式2x+3y=33 を満たす自然数x,yの組は xが2桁で最小である組は (x,y)=(1) である。 & SOLUTION ①0000) 1組ある。 それらのうち CHART 方程式の自然数解 不等式で範囲を絞り込む 「x,yが自然数」 すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利用して 初からxの値の範囲を絞り込むとよい。 基本例題127 と同様にして方程式 2x+3y=33 の整数解を求めた後で、x,yが自然 数になるように絞り込んでもよい。 1≦x≦15 ③ 2x+3(y-11)=0 2x=-3(y-11) 2x=33-3y |2x+3y=33 から すなわち 2x=3 (11-y).... ① 2と3は互いに素であるから、xは3の倍数である。②1は2の倍数である 11-y≤10 ① において, y ≧1 であるから よって から、yは奇数。 この条 件から絞り込んでもよ 2x≦3.10=30 更に, x≧1 であるから い。 ②③ から x=3, 6, 9, 12, 15 ゆえに, 等式を満たす自然数x,yの組は 75 組 それらのうちxが2桁で最小である組は(x,y)=(12,^3) 別解 x=0, y=11 は, 2x+3y=33① の整数解の1つ2x=33-3y であるから 2.0+3・11=33 ...... ② =3(11-y) ①②から すなわち 2と3は互いに素であるから, xは3の倍数である。 よって, kを整数として x=3k と表される。 ゆえに y-11-2k よって x=3k, y=-2k+11 (kは整数) x≧1,y≧1 であるから 3k≧1, 2k+111 PRACTICE 129 ③ 【福岡工大) 基本127 130 0 よって 1/13ks5 んは整数であるから k=1,2,3,4,5 ゆえに, ① を満たす自然数x,yの組は75組 xが2桁で最小となるのはk=4のときであり、 このときの組は (x, y)=(12, 23) 469 -13WN それぞれのェに対して yは自然数になる。 と変形してもよい。 | 2.3k=-3(y-11) 4m k-10 から k5 不等号の向きに注意。 xが2桁のとき x=3k≧10 15 方程式 9x+4y=50 を満たす自然数x,yの組を求めよ。 の紹介 ヨチャート 1クリッドの互除法と1次不定方程式 MPIAM. まで カ 様な めに 爽や 9. 回

未解決 回答数: 1