学年

質問の種類

物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
物理 高校生

(3)の運動エネルギーの総和の問題で、なぜ2枚目のように解いてはいけないのですか。A,B,C,D全て同じ速さだと思うのですが...

必解 30. <あらい板上の物体の運動〉 物体 D (2m) 物体A(2m) 物体B(3m) 机 物体 C (m) 図のように, 水平な机の上に直方体の物体Aを置 その上に直方体の物体Bをのせる。 Bには物体 Cが, Aには物体Dが,それぞれ糸でつながれてお り,CとDは, 机の両側にある定滑車を通して鉛直 につり下げられている。 A, B, C, Dの質量は,そ れぞれ, 2m〔kg〕, 3m[kg], m 〔kg〕, 2m [kg] であ る。机とAの間の摩擦はないが, AとBとの間には摩擦力がはたらく。 初めにAとBを手で 固定してすべてを静止させておき, 静かに手をはなして運動のようすを観測する。 運動は紙 面内に限られるものとし, また観測中にBがAから落ちることや, Aが机から落ちることは ないものとする。滑車はなめらかで軽く, 糸は軽くて伸び縮みせず、たるむことはないもの とする。空気抵抗は無視し, 重力加速度の大きさをg 〔m/s'] として次の問いに答えよ。 BはA上をすべらずに,Aといっしょになって机の上を左へ運動する場合について考える。 (1) このときのAの加速度の大きさを求めよ。 (2)このときのAとBの間にはたらく摩擦力の大きさを求めよ。 (3)Dがん 〔m〕だけ落下したときの, A, B, C, D の運動エネルギーの総和を求めよ。 次に,Bは机の上の同じ場所に静止したままで, Aが左に運動する場合を考える。 (4) この場合の, AとBの間の動摩擦係数を求めよ。 (5)Dがんだけ落下したときの, A, B, C,D の運動エネルギーの総和を求めよ。 最後に,Aは左へ運動しBが右へ運動する場合を考える。ただし、このときのAとBの間 の動摩擦係数を1/3として、次の問いに答えよ。

回答募集中 回答数: 0
物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
化学 高校生

⑴のイ、オ、キがよくわかりません。

125. 〈緩衝溶液とpH> (改) 次の(1)~(3)の問いに答えよ。 ただし, 酢酸の電離定数Ka は 2.0×10mol/L, アンモ ニアの電離定数 Kb は 1.81×10mol/L, 水のイオン積Kw は 1.0×10-14 (mol/L)? とす る。 -10g10Kb=4.74 として計算せよ。 10g102=0.30, 10g103=0.48 (1) 濃度 0.20mol/Lの酢酸水溶液100mLと, 0.10mol/L 水酸化ナトリウム水溶液 100mLを混合し, 水溶液Aを作った。 水溶液A中には [CH3COOH] [ァ mol/L, [CH3COO] が mol/L 存在する。 従ってこの水溶液の水素イオン濃度 [H+] は ゥ mol/Lとなり,pHはエである。 水溶液Aを純水で10倍に薄めたとき pHはオとなる。 次に, 水溶液A100mLに1.0mol/L 塩酸を1.0mL 加えると [CH3COOH] が mol/L, [CH3COO-] がキ mol/Lとなり, 水素イオン濃度 [H+] はク mol/L, pHはケとなる。 一方,純水100mLに1.0mol/L塩酸を1.0mL加えると, この水溶液のpHは メコとなる。 このように,水溶液Aに塩酸を加えたときのほうがpHの変化は小さい。 ア~ウカク の数値を有効数字2桁で,またエオケ および コ の数値を小数第1位まで求めよ。 〔14 札幌医大 〕 記 (2) (1) の水溶液Aに少量の酸あるいは塩基を加えてもpHはあまり変化しない。この理 由をイオン反応式などを用いて説明せよ。 [16 静岡大 改] (3)はじめに, 1.10mol/Lのアンモニア水を200mLとり 蒸留水で希釈して100mL とした。この希アンモニア水中の水酸化物イオン濃度は約 Amol/L である。こ の希アンモニア水を20.0mLとり,これに0.100mol/Lの塩酸 22.0mL を加えたと ころ, pH約B の緩衝溶液が得られた。 [A]と[B]に当てはまる数値を次の選択肢から選べ A: (ア) 2.0×10 -6 (イ) 4.0×10 -6 (ウ) 3.0×10 -4 (エ) 2.0×10-3 (オ) 4.0×10 -3 B: (ア) 4.3 (イ) 4.7 (ウ) 9.3 (エ) 9.7 (オ) 10.0 〔早稲田大〕

未解決 回答数: 0
公務員試験 大学生・専門学校生・社会人

公務員試験(大卒)判断推理の問題です 答えは1番です。 問題文でのAとCの発言が理解できません。 解説の右側「これを計算すると…」の部分を確認したのですが、やはり理解できませんでした。 どなたか教えていただけますか?? よろしくお願いします。

重要問題 /A 5 時計から時刻を推理するタイプ A~Dの4人は野球の練習のため、グラウンドの時計で10時ちょうどに 待ち合わせた。各人が次のように述べているとき、確実に言えることとして、 最も妥当なのはどれか。ただし、グラウンドの時計は正確であり、各人の 時計の針がずれてはいるが、正しく動くものとする。 A 私は自分の時計が2分進んでいると思ったので、 約束の4分前に着い たと思ったが、Bの時計では10時2分だった。 B 私は自分の時計で10時3分に着き、私の3分後にDが着いた。 C 私は自分の時計が3分進んでいると思ったので、 約束の1分前に着い たと思った。 私の時計はAの時計より7分進んでいた。 D 私は自分の時計で約束の時間ちょうどに着いたが、グラウンドの時計 では5分遅刻だった。 1 Aの時計はグラウンドの時計より3分遅れていた。 2Bの時計はCの時計より3分進んでいた。 3Cは2番目に早く着いた。 4 CはDの時計で9時54分に着いた。 5DはAの時計で10時3分に着いた。 この設問は時計の情報から到着順などを推理する問題です。 (警視庁Ⅰ類 2016年度)

未解決 回答数: 1
地学 高校生

2番の問題わかりやすく説明していただきたいです

2つのピーク 重要問題 1 地球の大きさ 地球の大きさに関する次の文を読み, 後の問いに答えよ。 紀元前230年ごろ,エラトステネスが初めて地球の大 きさを計算した。計算には,夏至の日の太陽の南中高度 がエジプトのシエネでは90°シエネからほぼ真北に 100kmのところにあるアレクサンドリアでは 82.8°であ ることを利用し,地球は球形であると仮定した。 (1) アレクサンドリアとシエネの緯度差を求めよ。 アレクサンドリア 天頂 太陽光 182.8° 90° (2)文中の数値を用いて, 地球の半径を有効数字2桁で 求めよ。 なお,円周率は 3.14 とする。 シエネ ●センサー 同じ天体の南中高度の 差は緯度の差に等しい。 解説 (1)2地点の緯度差は,下の図のβである。太陽光線 は平行なので, β = α となる。 よって, センサー 地球の大きさは,弧の 長さが中心角に比例する ことを利用して求める。 センサー α =90°- 82.8°=7.2° (2) シエネとアレクサンドリアとの 緯度差は7.2°であり,またその 間の距離は900km である。 中心 角と円弧の長さとの比例関係か 地球の半径をR とすると, 900km: 2×3.14×R =7.2° : 360° [有効数字の計算] 途中の計算では問題文 の指示より1桁多く計算 し、最後に四捨五入して 指示された桁にすればよ い。 したがって,R= 900km × 360° 2×3.14×7.2° ≒7166km 有効数字2桁のため, 7.2 × 10km と答えればよい。 内 答 (1) 7.2° (2) 7.2×10°km るほど! 地球の大きさの計算 a

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
数学 高校生

この解説を見せて頂けませんか? 出来れば明日までに知りたいです! 重要問題演習38P,60.61

38 箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき,次の確率を考える。 ただし、引いたくじはもとに戻さないものとする。 RIPRE ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 ③ 3番目の人と7番目の人が当たりくじを引く確率 ア ナ (1) まず, ①について考える。 1番目 2番目 3番目にくじを引く人が当たりくじを引く事象をそれ ぞれA, B, C と表し, P(C) の値を求めよう。 P(A)= イウ P(A∩B∩C)= 難易度 ★★★ 引く条件付き確率はPA(B) = 引いたとき, 3番目の人も当たりくじを引く条件付き確率は PanB(C) = カ キ の解答群 である。 また,1番目の人が当たりくじを引いたとき, 2番目の人も当たりくじ 0 10 C3 コの解答群 9C₂ ア ウ 9P2 目標解答時間15分 × ① 10P3 エ オ である。 ①について, 左から3番目に当たりくじがある並べ方は 人が当たりくじを引く確率は ク ケコ I である。さらに、1番目と2番目の人がともに当たりくじを カ SELECT SELECT 90 60 ある。 しかし、同じやり方で②,③を考えることは難しい。 そこで、 別の試行に置き換えて考える。 10本のくじをk1,k2, ......, kio と表すことにし,k1,k2,ks が当たりくじであるとする。この ■本のくじを横一列に並べる試行を考える。この試行において, くじの並べ方の総数は サ 通 シ通りあるから3番目 である。他の場合も同様に考えると,P(C) = である。 ② 10P7 ③10! であるから, ②39P2 ③ 9P7 ④ 39P7 ⑤9! ク 3.9! で コ (3) 当たりくじを◯, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。○と●の並べ方の総数は ス 通りである。 ①について、 左から3番目に○がある並べ t 通りあるから3番目の人が当たりくじを引く確率は 方は ス ⑩ 10C3 Ł の解答群 率は ① 10P3 ② 10P7 ③10! の解答群 9C2 ① 9P2 ②3.9P2 ③ 9P7 4 3.9P₁ ク ケコ (2) (3) のいずれかの考え方を用いると、 ②について, 7番目の人が当たりくじを引く確率 ツ と求 [ニヌネノ である。 ソ は ■タチ めることができる。 (4) これまでの箱とは異なる箱に100本のくじが入っており, そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき, 3番目 7番目 100番目の3人が当たりくじを引く確 ⑤ 9! ⑥ 3.9! である。 であり、③について, 3番目の人と7番目の人が当たりくじを引く確率は ■テト (配点 15) 38 43 <公式・解法集 35

回答募集中 回答数: 0