学年

質問の種類

物理 高校生

物理の磁気の問題です。 黄色マーカーで引いたところの解説をお願いします

180 第4章 電気と磁気 ★★ **140 【10分・16点】 XXXX 図のように, 自己インダクタンスLのコ イル, 抵抗値Rの電気抵抗, 電気容量 Cの コンデンサーを起電力 E の直流電源に接続 し 回路の特性を調べた。 直流電源およびコ E イルの内部抵抗は無視できるものとする。 0 A (4 R S₁ スイッチ S2 を開いたままで, スイッチ SL を閉じて, 十分に長い時間がたった状態について考える。 問1 コンデンサーに蓄えられた電荷はいくらか。 ①1/23CE ② CE ③ 1/12 CE2 ④ CE2 ⑤/12 LE ⑥ LE コンデンサーを充電し終わった後, スイッチ S を開き, 次にスイッチ S2 を閉じ ると,コンデンサーとコイルから成る電気振動回路ができる。すなわち, 充電され たコンデンサーの電荷はコイルを通し放電され, 振動電流が流れ始める。 ①1月 1 問2 スイッチ S2 を閉 (2 じた時刻を t=0 とす m AAA t るとき, コンデン サーのb点側の電荷 Qの時間変化を表す グラフはどれか。た だし, グラフの縦軸 はQを表すものとす る。また, マイルに 0 流れる電流の時間 WIN 変化を表すグラフは どれか。ただし,電流は a点からb点の向きを正とし, グラフの縦軸はiを表すも のとする。 Q のグラフ 1iのグラフ 2 問3 電気振動の周期はいくらか。 0 T√LC 22 T√LC T√LC 問4 インダクタンスLのコイルに電流Iが流れている場合, このコイルに蓄えら れているエネルギーは 1/12 L12 で与えられる。これを用いて,この回路に流れる振動 1 2T LC 電流の最大値はいくらか。 0 EVE EVEⓇ CE EVE E. ED C a IS₂ mm b IC §ε 図 に、 に時 何と れ (2 2 問3 問4 は ① to

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

下の方の青で囲ったところは、なぜxで表さずyとしているのですか?

■重積分...積分領域が変数に依存する場合 ○ 右図1のような立体 [分かりやすくするために階段 状に表示しているが, 実際は滑らかな局面で囲まれて いるものとする] の体積 (縦棒の体積の総和)は,面 積要素 ds=dxdy に高さz=f(x,y) を掛けて得られる体積 要素 dV=f(x,y)ds=f(x,y)dxdy の総和として, 定義域D上の重積分 JSpf(x,y)dxdy で求めることができます. of(x,y) が連続関数で,各変数の定義域が α≦x≦b, asysであるとき、この重積分は cb [ { [ f(x, y)dx } dy ...(1) a [ { [ f(x, y)dy } dx...(2) のように, 1変数の積分の繰り返しによって行うこと ができます. (1) は右図2のように, まず変数yを固定して,各々 のyについて,xで積分し(図で示した壁の面積S(y) を求めて),次にy の関数として表されたその面積を y で積分することによって体積を求めることに対応し ています。 (2)は図3のように,初めに x を固定してyで積分 し, 図で示した壁の面積S(x) を求めて、次にxで積分 するものです。 -1 ○変数の定義域が 0≦x≦1,0≦y≦xのよ うに他の変数に依存しているときは T! { [ f(x, y)dy } dx 0 または 0≦ysl, exslとして L' { [' f(x, y)dx } dy または D のように計算できます。 一般に,図4 (その平面図が図5) のように積分領 域Dの境界線が長方形でなく, 変数x,yの値に依存し ている場合 図2 図3 図4 図5 図6 B y 88 a S(x) b(v) a(y) 領域D B(X) _s(y) y b(y) X

未解決 回答数: 1