学年

質問の種類

数学 高校生

格子点の求め方が解説を読んでも分からなかったので教えて頂きたいです。存在範囲の頂点の所までは理解出来たのですが。直線y=xに平行で辺りからの説明が分からなくなってしまいました。

総合を正の整数とする。 右の連立不等式を満たす xyz空間の点P(x,y,z) 28 で、x,y,zがすべて整数であるもの (格子点)の個数をf(n) とする。 極限 f(n) を求めよ。 na lim n→∞ z=k(kは整数) とすると, 連立不等式から k-n≦x+y≦n-k かつ x+y=n-k x+y=k-n -k-n≤x-y≤n+k (x,y,z) が存在するためには k-n≦n-k かつ -k-n≦n+k (-n, k) LU x-y=-k-n (-k, n) 〔東京大〕 本冊 例題 89 x=y=n+k ( (n,-k) (k, − n) x+y+z≤n -x+y-z≤n x-y-z≦n -x-v+z≤n HINT z =kとおいてん のとりうる値の範囲を求 め, 平面 z =k上の格子 点の数をk, nで表し, 格子点の総数を求める。 ←空間を平面 z=kで切 口の図形を考え る。 から -n≤k≤n よって, 点 (x,y) の存在範囲は図から、4つの頂点が(-k, n). (-n, k),(k, -n (n-k) である長方形である。 この長方形にある格子点の個数を N とする。 直線y=x に平行で, 直線 x+y=n-k上の格子点を通る直線 ←直線y=xに平行で 上には (n-k+1) 個 また直線y=xに平行で,直線 x+y=n-k上の格子点を通らない直線上には (n-k) 個の格 子点があるから (n-k+1) 個の格子点を もつ直線は (n+k+1) 本, (n-k) 個の格子点をも つ直線は (n+k) 本ある。

回答募集中 回答数: 0
数学 高校生

格子点の問題の解き方を教えて欲しいです!

ともに整数で 並ぶから、 る。 いた よび内部である。 (1) 領域は、右の図の赤く塗った三角形の周お 直線y=k (n-1, ......, 0) 上には, 0 (2n−2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 基本 16 (2n-2k+1)=(2n-2.0+1) k=0 =n²+2n+1=(n+1)² (1) n +(-2k+2n+1) =2n+1-2・1/23n(n+1)+(2n+1)n y4 k=1 n. 0 n =(n²+1)+(n²+1)Σ1−Σk² x+2y=2n k=1 y n n-1 線分x+2y=2n(0≦y≦n) 上の格子点(0, n), (2, n-1), ....*', (2,0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), 06 (n+1) 個 (0, n) を頂点とする長方形の周お よび内部にある格子点の個数は (2n+1)(n+1) (対角線上の格子点の数) ゆえに、求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) (*) =(長方形の周および内 部にある格子点の数) よってN=1/12 ((2n+1)(n+1)+(n+1)=1/27(n+1)(2n+2)=(n+1)^(個) (2)領域は,右の図の赤く塗った部分の周および内部であ る。 直線x=k(k=0, 1,2, YA n-1, n) 上には, ²k2+1) 個の格子点が並ぶ。 よって, 格子点の総数は Σ(n²−k²+1)=(n²-0²+1)+Σ(n²+1−k²) ==(n+1)(6(n²+1)-n(2n+1)} =(n+1)(4n²−n+6) (13) k 1 0 JU [+2+A01+³A01- 1 2 2n =(n+1)+(n+1)-1/12n(n+1)(2n+1) =(n+1)(n²+1)-1/1/n(n+1)(2n+1) -y=-11/2x+n (x-2n-2y) 2n-2k 2n-1 2n-21 2n k=0 の値を別扱いした -2Ek+ 0 = -2.1/n(n+1) Σk+(2n+1)Σ1 n² n²-1 n²-2 k² k=0 +(2n+1)(n+1) でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。よって ( 求める格子点の数) ×2 y=x2 k=1 391 0 1 R n 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から,領域 外の個数を引く。 ors (2) 0≤x≤n, y≥x², y≤2x² 1章 x 3 PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。 ただし, nは自然数と する。 (1) x20, y≥0, x+3y≤3n 種々の数列

回答募集中 回答数: 0
数学 高校生

格子点の個数の問題が全くわかりません! 考え方を教えて欲しいです。

票がともに整数で =x² xa 基本 16 ey が並ぶから, になる。 いた (1) 領域は, よび内部である。 直線y=k(n-1, (2m-2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 右の図の赤く塗った三角形の周 2-0 (2n-2k+1)=(2n-2-0+1) .....,.0) 上には、 ゆえに, k=1 =n²+2n+1=(n+1)² (13) ya 線分x+2y=2n (0≦y≦n) + 2(−2k+2n+1) = 2n+1-2·½n(n+1)+(2n+1)n ya n -1 0 k k=1 1 -x+2y=2n O 上の格子点(0, n), (2,n-1), (2n, 0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), よび内部にある格子点の個数は (2n+1)(n+1) 0, n) を頂点とする長方形の周お 求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) - (*) よってN=1/12 (2n+1)(n+1)+(n+1)=1/2(n+1)(2+2)=(n+1) US (n+1)個 2n 12 (2) 領域は,右の図の赤く塗った部分の周および内部であ る。直線x=k(k=0,1,2, (n²-k²+1) 個の格子点が並ぶ。 よって, 格子点の総数は ......, n-1, n) 上には x £(n²−k² + 1) =(n²−0²+1)+ Σ(n²+1−k²) ___ \7 +3 k=0 までの和を求めよ =(n²+1)+(n²+1)Σ¹–Ë k² k=1 = (n²+1)+(n²+1)n- n(n+1)(2n+1) 2=(n+1)(n²+1)-1/12 n(n+1)(2n+1) とする=1/(n+16(n²+1)-z(2n+1)} 400*NZJJR$ 1+2+01+01+ =(n+1)(4n³²_n+6) (15) 12m-21 2m 2月2k 2m-1 k=0 の値を別扱いした が、 -2 Ek+(2n+1) 1 = -2- -— n(n+1) ( 求める格子点の数)×2 √743' k21 でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。 よって n²-1 (対角線上の格子点の数) =(長方形の周および内 部にある格子点の数) ²-2 +(2n+1)(n+1) 391 1 y=x² 1章 (A) OTS 3 1 k n 800 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から 領域 (2) 0≤x≤n, y≥x², y≤2x² 種々の数列 外の個数を引く。 k=1 x PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。ただし,nは自然数と -Tore : S する。 (1) x≧0 y≧0,x+3y≦3n

回答募集中 回答数: 0