学年

質問の種類

生物 高校生

5番が正しい理由がさっぱわからないので教えてください

10000 206 出典:立行政法人統計センタ 1400 SSDSE-C-2021により作 の階級に含まれる。 また、四分位範囲として 47 226 0000円以上 22000円未満 000円以上 28000円未満 28 (Coo 29500 牛肉の年間支出金額 (2018年~2020年の平均値) 1500 34000 40000 (円) (円) 畿 (7市) 中国・四国 (9市), 九州 沖縄 (8市) の6つの地域に分けたときの箱ひげ図である。 のデータについて 47 市を北海道・東北 (7市) 関東 (7市) 中部 (9市) 近 40000- 38000- 36000- 34000- 32000- 30000- 28000- 26000- 24000- 22000- 20000- 18000- 16000 14000- 28000 12000- 10000- 北海道 ・東北 関東 中部 近畿 中国 九州 ・四国 ・沖縄 図2/牛肉の地域別年間支出金額 (2018年~2020年の平均値) (出典: 独立行政法人統計センターSSDSE-C-2021により作成) と計量 +cos 150° tan 30° √3 =0 2)+(cos0-√2 sin 0 ) cos0 + 2 cos' 20-2√2 sin 0 cos 0+2 sin² 3 sin0 0 であるから 26 データの 分析。 (2) 図1と図2から読み取れることとして,次の①~⑤のうち、正しいものは と ウ 本気である。 なお、各市の年間支出金額はすべて異なる。 H オ の解答群 (解答の順序は問わない。) 29500 ¥7500 15000 20 26500 14500 13000 - 2650 145 29500 -14500 ウ 15000 =2√6 30°-0) ア | の階級は、6つの地域の市をそれぞれ1つ以上含む。 6つの地域の中央値のうち、図1のデータの中央値に最も近いのは関東である。 6つの地域について、どの地域の四分位範囲も、図1のデータの四分位範囲より小さい。 近畿は100g当たりの牛肉の価格が他の地域よりも高い。 近畿で30000円未満の市は1つである。 16000円未満の市のうち, ちょうど半分が北海道・東北の市である。 6 1+2/6 り (配点 10 ) AB in C CA: AE

回答募集中 回答数: 0
数学 高校生

数学、図形と計量の問題です。 花子さんの方(ⅱ)の解答の5行目あたりからの意味がわかりません。どなたか解説お願いします🙇

(ii) 花子さんの求め方について考えてみよう。 △ABCの外接円の半径をR とすると AB=2RX I である。 また BH=2RX オ CH=2R × カ S= 2 BCX BC2 × であるから, BC=BH+CH より R をBC と B C を用いて表すことができる。 よって AB × BC sinB sinB sinC (2) cosBsinC + sin Bcos C である。 I の解答群 sin B ①sinC 1 1 sin B sin C 1 cos B cos C cos B cos C オ の解答群(同じものを繰り返し選んでもよい。) sin B sin C cos C cos B cos C sin Bcos C ③ cos Bsin C cos B sin B sin B sin C ⑦ sin C cos C cos B ⑧ 1 sin B sin C cos Bcosc (2)太郎さんと花子さんは,求めた式の形が異なることを疑問に思った。次の①~③のう ち ① ② の式について正しく記述しているのは キ である。 キ の解答群 ①の式のみ、△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ①②の式のみ,△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ② ① ② の式ともに, △ABC が鋭角三角形でないときに面積Sを求められない ことがある。 ①と②の式は同値なので,△ABC の形状にかかわらず面積Sを求めることが できる。 3

回答募集中 回答数: 0
数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
技術・家庭 中学生

家庭科の問題です。 1、3番の問題と2、3番の問題が合っているか教えてください。答えが見づらかったらすみません💦

学習の まとめ 1 五大栄養素と6つの食品群について ①に当てはまる言葉を答えな 1 さい。 ① たんぱく <五大栄養素> <働き> <6つの食品群> (0) 無機質 1群 魚・肉・卵・豆(4) 体の (1) をつくる (2) 2群 (5) 乳製品骨ごと食べる小魚 (6) 3群 (7) 4群 その他の野菜 (8) きのこ 炭水化物 5群 穀類 (9) 砂糖 . (3) 6群 (10) 種実 体の調子を整える (12)になる AN 豆 海盛 SAP. 271 10 2 次の( )に当てはまる言葉や数字を答えなさい。 (11) (1)水には、運搬老物の運搬や(2)(3)の調節など 組織 12 の働きがある。 炭水化物には、体内でエネルギー源となると消化されず、腸の 調子を整えて便通を良くする(②)がある。 2 ふく ① (3)( ① )は、食品に含まれる栄養素の種類や量を可食部(②)gあたり (1) 2 で示したものである。 3 こんだて ① 3 献立作成について、 次の問いに答えなさい。 (2) ぜっしゅ 2) (1)食事摂取基準を満たすために、 1日にとらなければいけない食品の種類や (1) 量を示したものを何というか。 (3) さい あたい 次の表は、(1)について 12~14歳男女の値を示したものである。)に当 2 てはまる数字を答えなさい。 食品群 群 2群 牛乳・乳製品・ 3 群 4群 5 群 6群 その他の野菜・ 類 13 ゆし 魚・肉・卵 油脂・ ねんれい 年齢 骨ごと食べる小魚 緑黄色野菜 果物・ いも (1) 食品成公 豆・豆製品 かいそう 種実 性別 海藻 きのこ 砂糖 (2) 12~ 男 [歳]]]]]]] 330 300 700 25 400 100 ( ) 650 20 400 問題点 もと 次の1日の献立を見て分かる問題点を挙げ、改善する方法を答えなさい。 少ない。 朝食 昼食 間食 夕食 夜食 紅茶 オレンジジュース カップラーメン (3)改善する方法 ポテト チップス ロール パン かつ丼 私たちの食生活 東 しる 米飯 わかめのみそ汁 ソーダアイス

回答募集中 回答数: 0
生物 高校生

本当にお願いします!!!! 教えてください‼️‼️

(2) 現在用いられている長さの単位と補助単位の関係は次の通りである。 ・すべての計量の基準となるものは 1m である。 D 長さの補助単位は原則として、1000倍または1/1000 倍となる ・面積や体積は長さの2乗、 3乗なので、 m2 および m3と表示する ① 1m の1000倍となる長さの単位は何か ② 1m の1/1000 倍となる長さの単位は何か ③②の単位のさらに 1/1000倍となる長さの単位は何か ④我々の日常生活では、1mの1/100倍の長さを利用している。この単位は何か。 ⑤ 36700mを①の単位を用いて答えなさい。 6 0.000067mを②の単位を用いて答えなさい。 720000cm2 を m2 に換算しなさい。 ⑧ 0.5m2を cm 2 に換算しなさい。 2500cmは何リットルとなるか。 ⑨2500 10 1.2㎡は何cmとなるか。 (3) 液体の濃度に関する単位とその換算について 液体の濃度とは、 「溶液中の溶媒に対する溶質の割合」 である。 ① 質量 100g の食塩水の濃度が15%であった。 食塩の質量をもとめよ。 ②100gの水に20gの食塩を溶かした食塩水の濃度をもとめよ。 ③②の食塩水に水を加えて10%にした。加えた水の量をもとめよ。 ④ 食塩 15gをすべて水に溶かして5% 食塩水をつくるのに必要な水の量をもとめよ。

回答募集中 回答数: 0
生物 高校生

高校の課題なんですけどわかる方教えてください‼️

(2) 現在用いられている長さの単位と補助単位の関係は次の通りである。 ・すべての計量の基準となるものは1mである。 ・長さの補助単位は原則として、1000倍または1/1000 倍となる ・面積や体積は長さの2乗、 3乗なので、m² および m3と表示する ① 1m の1000倍となる長さの単位は何か (2) 1m の1/1000 倍となる長さの単位は何か 3 ②の単位のさらに 1/1000 倍となる長さの単位は何か ④ 我々の日常生活では、 1mの1/100倍の長さを利用している。 この単位は何か。 ⑤ 36700mを①の単位を用いて答えなさい。 ⑥ 0.000067mを②の単位を用いて答えなさい。 720000cm2を m2 に換算しなさい。 (8) 0.5m²を cm2 に換算しなさい。 ⑨ 2500cmは何リットルとなるか。 10 1.2m² は何cmとなるか。 (3) 液体の濃度に関する単位とその換算について 液体の濃度とは、 「溶液中の溶媒に対する溶質の割合」 である。 ① 質量100g の食塩水の濃度が15%であった。 食塩の質量をもとめよ。 ②100gの水に20gの食塩を溶かした食塩水の濃度をもとめよ。 ③②の食塩水に水を加えて10%にした。 加えた水の量をもとめよ。 ④ 食塩 15gをすべて水に溶かして5% 食塩水をつくるのに必要な水の量をもとめよ。

回答募集中 回答数: 0