学年

質問の種類

数学 高校生

この問題の、分散と、標準偏差のもとめかたが、解説を読んでもわかりません。教えてほしいです!

904 基本183 分散と平均値の関係 「ある集団はAとBの2つのグループで構成さ れている。データを集計したところ、それぞれ のグループの個数、平均値, 分散は右の表のよ DOO グループ 個数 平均値分 20 16 A 2 60 12 B [立命 うになった。このとき、集団全体の平均値と分散を求めよ。 指針 データの平均値を、分散を とすると、 基本 例題 18 次のデータは, 5,4,8, (2) 公式 が成り立つ。公式を利用して、 まず, それぞれのデータの栗の総和を求め、 式を適用すれば、集団全体の分散は求められる。 この方針で求める際,それぞれのデータの値を文字で表すと考えやすい。 再度 下の解 は、A,Bのデータの値をそれぞれ X1,X2, ・・・..., X201, Y2, ......, Yo として考 ている。なお、慣れてきたら, データの値を文字などで表さずに, 別解のように 求めてもよい。 (1)のデータ このデータ は正しくは は修正前より (3)このデー 26℃であっ 分散は [ ① 修 20×16 +60×12 集団全体の平均値は =13 20+60 解答 集団全体の総和は 20×16 +6 指針 (3) (3) (イ) y6o とする。 「Aの変量をxとし, データの値を X1, X2, ......, X20 とする。 またBの変量をyとし, データの値をy1,y2, ....... xyのデータの平均値をそれぞれx, y とし, 分散をそれぞれ sx, sy2とする。 x2より,=sx2+(x)2 であるから x2+x22+......+X202=20×(24+162)=160×35 y=(y)'より,y=sy'+(y) であるから y2+y22+......+y602=60×(28+122)=240×43 よって、集団全体の分散は 1 20+60 (x'+x2+....+X202 +yi+y22+....+y6o²) 132 解答 (2) デー 修 (3)(ア) 集団全体の平均値は せ (イ) ( る 2 2 160×35 + 240 × 43 80 -169=30 別解 集団全体の平均値は 20×16 +60×12 20+60 =13 A のデータの2乗の平均値は24+162 であり, Bのデータの2乗の平均値は 28+122 であるから, 集団全体の分散は 20×(24+162)+60×(28+12) 20+60 ゆ正 ・132= 160×35 + 240 × 43 80 -169=30 練習 次のデ ③ 184 ③ 183 残りの6個のデータの平均値は8,標準偏差は5である 練習 12個のデータがある。 そのうちの6個のデータの平均値は4,標準偏差は3です (1)全体の平均値を求めよ (広島工 (1)こ (2)こ 2 °C は

回答募集中 回答数: 0
数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0
数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0