学年

質問の種類

数学 高校生

数1A標準問題精巧からの問題 この問題でα=-1を求めた後にpとqの連立方程式を解くのですが、解説とは違ってp=q-1 (解説ではq=p+1とおいている)とおいた時に、p^2=4)よりp=±2がでてきます。なぜこの時pが+2になってはいけないのか解説できないでしょうか。

02/19212/31 標問 28 共通解 0 の方程式 x+px+g=0 x²-px-q=0 について,次の条件(a), (b), (c)が成立している (a) g≠0 である (b) ① ② は共通の解αをもつ (c) ②は重解をもつ このとき, α, p, gの値を求めよ. ・精講 2つの方程式が共通な解をもつとい う設定もときどきあります. 解法のプロセス 共通解をもつ このようなときには, 共通解をα とおく のが常套手段です。 本間の場合, 1, ②は共通の解αをもつので a³+pa+q=0 a2-pa-g=0 が成り立ちます。 ↓ 共通解をαとおく. D= 67 (工学院大) ······ 3 ←x=α を ①に代入する x=α を ②に代入する 後は、この2つの式を連立します。 当然の事ですが、 連立する際には, 式の形をよ く見て、いじってみるより他に方法がありません. 上の③ ④の場合なら, ぜひ2式を加えてみま しょう.3+α²=0 というとても有難い式が得 られます. 解答 ①,②が共通の解αをもつ ((b)) ので °+pa+g=0 a²-pa-q=0 ③ + ④ より a³ +α²=0 よって, a²(a+1)=0 1012/15 28

解決済み 回答数: 1
数学 中学生

下の問題の(2)が五角形になるのはなんてですか? (作図の仕方も教えていただけると嬉しいです、)

中3-入試実戦後期 数学 npad MOVIE 解説動画検索番号 322218 第6講座 空間図形 (2) 要点の確認 1:立体を切断するときの切り口における法則 法則 ① 同一平面上の2点は結べる。 法則 ②平行な面どうしの切り口は必ず平行になる。 例題: 次のそれぞれの立方体 ABCDEFGH において, 与えられた3点を通る平面で切断したときの切り 口の形を答えよ。 ただし、点P,Qはそれぞれ辺 AE, AD の中点である。 (3) 点 C, P. Q (1)点D, E, G 点C.D.P D C A Q Q A B P P G H H E E F F (A) B C(D) 正三角形 長方形 台形 (E)Fl 'G (FF) 標準問題 1 右の図のような立方体 ABCDEFGH で, 点P,Q,R, S はそれぞれ 辺 AB, CD, EF, FG の中点である。 AB=4cm のとき, 次の問いに答えよ。 □□(水) 点 A, Q, Gを通る平面で立方体を切ったときの切り口の形を答えよ。 のの 何の中で Q.Rを ICFを着る平面で立 12x1 右の図のような立方体 A AD Bの中点である。こ この立方体を、線分 P ときその切り口の 点を通るときか FCD) GIC (A)E この立方体を3点 「点Aを含む立体の体 B 1引とする 長方形 □ (2) 点D, R, S を通る平面で立方体を切ったときの切り口の形を答えよ。 p H E R F 五角形 の 点P, C, G を通る平面で立方体を切り2つの立体に分けるとき, 頂点Bを含む立体の体積を求めよ。 2 4x4x OPAQ エブ 右の図のような Rはそれぞれ辺 AL を通る平面で切り めよ。 <-40- 163 3

解決済み 回答数: 1
物理 高校生

1の(3)の問題がなぜ①、②よりTc/Tbになるのか理由が分かりません。 なぜそうなのか教えてください🙇‍♀️

4 A 1.〈速度の合成〉 に万金 図のように、一定の速さで一様に流れる川に浮かぶ船の運動 を考える。船は、静止している水においては一定の速さ Us (Us>v) で進み,また, 瞬時に向きを自由に変えられる。 最初, W 船は船着場Aにいる。 Aから流れに平行に下流に向かって距離 Cから流れに平行に下流に離れた地点をDとする。 船の大きさは L離れた地点をB, A から流れに垂直に距離 W離れた地点をC, 無視できるものとする。 (1)地点AとBを直線的に往復する時間 TB を L, Us, vを用いて表せ。 C D 船 A 標準問題 B (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け、流 れに垂直に船が進むようにして, 地点AとCを直線的に往復する時間 Tc を W, Us,Dを用 いて表せ。 (3) L=W のとき, Tc を TB, Us, v を用いて表せ。 また, 時間 Tc と TB のうち長いほうを答 えよ。 (4) 船首の向きを, AC を結ぶ直線に対し角度 0 (0> 0) だけ上流向きに向けて地点Aから船 地点Cに到着する。 地点AからDを経由しCまで移動するのに要する時間を W,U, を進めると,地点Dに直線的に到着する。 その後, 地点DからCに, 流れに平行に進み, を用いて表せ。 [21 東京都立大 ]

未解決 回答数: 1
化学 高校生

ウの答えはメタンなんですけどなんでメタンとわかるんですか?

の 8. 分子の極性と分子結晶 -43- 記入せよ。 ごきているが,共有電子 ■き寄せられているため この電荷を帯び、結合に 分子という。 [標準問題〕 70.(水素結合)右の図は14族から17族の元素の水素化合温度 (°C)エイト 原子分子であっても、水 り 二酸化炭素分子は 物の沸点を示したグラフである。これを参照して 文中の( )に適切な語句・数値を記入せよ。 グラフの中で,最も沸点が低い物質は( 第 (子化) 周期元素の水素化合物である 次の 150- H₂O ■14族 100- )族, 15族 よ)50- ----16族 選べ 比較的多いが、固体の ( を生じるからである。 )( であり、(ア)族の水素化合物は周期が増すにしたがって 沸点が( くなっている。 一般に構造の似た分子 では,分子の質量が(な)くなるほど分子間には たらく力が(カ くなるので,沸点が(エ)くな ることが知られている。 ところが、(ア)族以外のグラ フを見ると,第3周期以降では沸点が次第に高くなっ ているものの、第2周期元素の水素化合物はいずれも 分子の質量が小さいにもかかわらず沸点が異常に高い 値を示している。 これは水素と結合している(キ 原子の X ロー 17族 0 -50- とれ -100 -150- -200 J), 34 5 周期 )が大きく,分子間に(* )結合 れて容易に液体, 71.(水素結合)次の文中の( )に,下記の語群から適当なものを選び記入せよ。 ・中の窒素原子や酸素原子やフッ素原子の部分と

未解決 回答数: 0
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0