学年

質問の種類

数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0
数学 中学生

最後がわかりません。 教えて下さい!

7 (1) 右の図のように, 放物線y=x2上に3点A,B,Cが あります。 点A,Bのx座標はそれぞれ -2, -1 で, 点Cのy座標は9です。 この放物線上にBC // ADと なるように点Dをとるとき,次の各問いに答えなさい。 点Bのy座標を求めよ。 (2) 直線BCの式を求めよ。 純子 AL B -y=x² (3) 次の純子さんとこころさんの会話文の空欄①~③にあてはまる数や式を求めよ。 D 純子 :点Dの座標ってどうやって求めたらいいんだろう? こころ: 放物線と直線の交点のx座標は, y=x2と直線ADの式の連立方程 式で解く方法が教科書の発展問題に載ってあったのを見た気がするよ。 : そんな問題, 教科書にあったかな? とりあえず, ちょっとやってみ よう。まずは直線ADの式を求めないといけないってことだよね。問 題文に「BC//AD」 ってあるから,直線ADの傾きは ① で, 点 Aを通るから,y= ② と求めることができるね。 ・・・・・答えが2つ出てきたけど,何か間違っているのかな? 四角形ABCDの面積を求めよ。 cy=9 こころ: うん, そこまでは間違っていないと思うよ。 純子 :あとは,このy= ② と y=x2を連立方程式で解くということは, x²= を解けばいいということかな。 この2次方程式を解くと こころ: 点Aと点Dの2点のx座標ということだと思うよ。 純子 : なるほど! じゃあ、点Dの座標は ③ということだね。 こころ: この連立方程式を使って解く方法は違う問題でも使えそうだから覚え ておいたほうがよさそうだね。 x

回答募集中 回答数: 0
数学 高校生

193.3 この記述でも問題ないですよね??

304 00000 基本例題 193 導関数と微分係数 (1) 関数f(x)=2x+3x2-8x について, x=-2における微分係数を求めよ。 (2) 2次関数f(x) が次の条件を満たすとき, f(x) を求めよ。 A (1)=-3. f' (1)=-1, f'(0)=3 (3) 2次関数f(x)=x2+ax+bが2f(x)=(x+1)f'(x)+6を満たすとき,定数の b の値を求めよ。 基本191) Webs 指針▷ (1) x=q における微分係数 f'(a) は,導関数 f'(x) を求めて, それに x = a を代入する。 簡単に求められる。 f(x)は2次関数であるから, f(x)=ax²+bx+cとする。アーム ②2 導関数 f'(x) を求め, 条件をa, b, c で表す。(笑) ③3 a,b,c の連立方程式を解く。 (3) 導関数 f'(x) を求め,条件の等式に代入する。一(d+xp(s+xmi= →xについての恒等式であることから, α, 6の値が求められる。 (2) 解答 (1) f'(x)=2.3x2+3・2x-8・1=6x²+6x-8 したがって f'(-2)=6・(-2)^+6・(-2)-8 =4 J3 (0+20) (2) f(x)=ax2+bx+c (a≠0) とすると (1) f'(x)=2ax+b() a+b+c=-3 2a+b=-1 f(1)=-3 から f' (1)=-1から f'(0)=3 から これを解いて したがって (3) f(x)=x2+ax+bから 与えられた等式に代入すると b=3 a=-2,6=3, c=-4 f(x)=-2x2+33-4 f'(x)=2x+α 1-2x3. = (d+xb) = ( 2(x2+ax+b)=(x+1)(2x+α)+6 整理して 2x2+2ax+26=2x2+(a+2)x+a+6 これがxについての恒等式であるから、両辺の係数を比較 すると 2a=a+2, 2b=a+6 これを解いて a=2, b=4 ^²(6+x)) = (+2) -3r²-12r+5@r=1 / tu TUALET 微分係数 f'(a) の求め方 [1] 定義 (p.296 [①])に従って 求める [2] 導関数 f'(x) を求めて、 x=a を代入する。 の2通りがある。 例題 1931) では [2] の方法の方が早い。 なお、定義に従うなら f(-2+h)-f(-2) h f'(-2)=lim または f'(-2)=lim として計算。 ho x-2 f(x) f(-2) x-(-2) 係数比較法。 1

回答募集中 回答数: 0
数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
数学 高校生

不等号の下に=がどういう時に付くのかがよくわかりません

例題129 三角関数 0≦0 <2のとき、次の不等式を解け. (1) 2 sin 02-1 (8 (2) 2 cos > IS 解答 (1) 2sin≧-1 より, sin0= - 考え方 三角関数を含む不等式は,まず「=(イコール)」とおいて,方程式を解くとよい あとは、例題128 (p.253) と同様に考える. ここでは単位円を用いて考えてみる =! よって、 右の図より、 7 11 osos, r≤0<2n <2π 6 (3) tan0≥-√3 5 より、0, (2) 2 cos >√3 h, cos 0>. √√3 cos0= より 2 よって、 右の図より sin 02 11 17/11/1/2π TC 6 6 11 0≤0<n<0<2n 6' л≤0<2n √3 2 11 -π 匹 6'6 7.11 tan0=-√3より.8=12/21. 1/23 5 よって、 右の図より 37 π 2 2' 3 1 2 9 17 15 3 (3) tan O -1 T 11 6 例題129 をグラフで考えると次のようになる. (1) YA (2) YA y=sine /color] 「53 -1 -√3- 1 O .7 6 π 6、 -TC TC y=coso 12 0 ale=0.4 √√3 2 1x 12 上 x AX x **** -√3 「まず 「=」とおいて入 程式を解く. 直線y=-12 より上り 0≦0.2より、2を 含まないことに注意す る. まず「=」とおいて 程式を解く. 0キ 直線x= 11 1/7<0</20 <θ< √3 しない まず「=」とおいて 程式を解く. 傾きが-√3よりも大 きい. (3) YA T 3 三角関数を含む不等式は、 まず 「=(イコール)」 とおいて、方程 式を解くの増加に伴い, sin 0, cos 0, tan 0 の値はどのよう に変化するか単位円を用いて考える Bo 回単 2'2" に注意する. より πであること by=tand F

回答募集中 回答数: 0