学年

質問の種類

数学 高校生

(2)θとおく、という考えの導き方を教えて欲しいです。 あと、θと置いた時、どうして(2)の解説の3行目のことが言えるか教えて欲しいです。

4/ 無限等比級数の図形への応用 (2)POQ=0 とおくと, (1) より 8 83 zy 平面上に, 2直線 y=xとl:y=2x とがある。 直線上の点P (1,1) を通りに垂 直な直線との交点をQ とし,点Q を通り に垂直な直線との交点をP とする. 以下同様に,上の点P を通りに垂直な 直線との交点をQnとし, Q を通りに垂 Y 12:y=2x ao sin= OP。 √10 √10 (0<<) Ly=x [PQncos0QnP+1 XpPo (1,1) ... 直な直線ととの交点をP+1として,直線上の点Po, Pi, Pz, ・・・お よび直線上の点Qo, Q1, Q2, を定め, PrQn=an (n=0, 1, ...) と おく.このとき,次の問いに答えよ. 10° (1) α を求めよ. なかも (2) an+1 を an で表せ. 次に,∠PQP+1=∠QnPn+1Q+1=0より QP+1 cos 0=Pn+1Qn+1 QnP+1 を消去して Pn+1Qn+1=cos20PQn an+1= cos20.an cos20=1-sin²0=1- an+1= an lim PQ すなわち lim n→∞k=0 だから, YA Q Q Pa Pa+1 1 9 0 = より 10 10 akは、 n→∞k=0 ( (3) lim PkQk * * D L . n→∞k=0 初項 店,公比 あるので 10 -1<- <<1 だから,収束して 10 9 の無限等比級数を表し (46ポイント) 精講 「以下同様に」という文言がポイントです. この文言があるときは、 漸化式をつくることになりますが、 1つだけコツがあります. それ は,初項を求めるための図とは別に, 漸化式をつくるための図をか くことです. 問題文の図を利用して(1)も(2)も解こうとすると,図がゴチャゴチ ャしてわかりにくくなります. 1 1 その和は, =2√5 √5 9 1 10 ポイント 点列ができる図形の問題では、 初項を求めるための図 と漸化式をつくるための図の2つをかく また,(3), limΣの形からもわかる通り、無限級数の和がテーマです. (46 解答 (1) Po(1,1) と直線 2x-y=0 の距離:y=2xc がα だから, 演習問題 47 h:y=x ao Po 1----- |2-1| 1 ao= 5 ことができ √22+(-1)2 (IIB ベク34点と直線の距離) To x 10 点P (n=0, 1, 2, …)をx座標が1/7(a>0)である放物線 y=x2上の点とする. 2点PとP+1 を結ぶ線分と放物線によっ て囲まれる部分の面積を An とするとき, 次の問いに答えよ. (1) A をαで表せ. (2) Anna で表せ. (3) Anaで表せ. n=0

解決済み 回答数: 1
数学 高校生

写真の中にある紫ペンで囲った式の変形の覚え方を教えて欲しいです。語呂合わせでもダジャレでもなんでも結構です。全く覚えられなくて…。誰かお願いします!単元は数学的帰納法です。

考え方 自然数nに関する証明については, 考えてみよう. (証明)(1) n=1のとき,P,=t+1=xより成り立つ。 ーソドッ =kのとき、P=+1/2=xのを次の多項式)と仮定すると th +1 のとき, Ph+1=tk+1+ th+- th =xP-P- tk+1 Phだけではなく,P-1 の次数についても仮定が必要になる.また,(II) m ・・であるから, k-1≧1 より k≧2 でなければならない + ここで, Pa= (xk次の多項式) と仮定しているから,xPkはxの(k+1) 次 ある.しかし,P-1 については,何次式なのか、xの多項式なのかもわからない とすると, n=1, 2, 解答 (I) n=1のとき,Pi=t+==xより成り立つ. 1 t \2 1 n=2のとき,P2=tt1/12=t+ t (II)n=k-1,k(k≧2) について、題意が成り立つと仮定する. 2=x-2より題意は成り立 JPk-1 は xの (k-1) 次の多項式 すなわち, [Phはxの次の多項式 k tk+ Pk+1=t+1+ +1 1+1 = (1 + 1/1) (0 + 1 ) = ( 1^-1 + tk+1 =xP-P-1 で表されると仮定す tk th tk- 1 ここで,xPk は x(xのk次の多項式)より, 数列 + (I) (II)より すべての自然数nについて題意は成り 立つ. *)は成り立 よって、n=k+1のときも題意は成り立つ 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. xの (k+1) 次の多項式となり、Pはxの(k-1) Pa (k- はxの 式より, Pk1 =(x (k+1) -xの(k- 注》 (I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法 2次の多項式であることを示そうとすると, Po, P, が必要となり困る。 れていない) よって,(I)でP2 も調べておく必要がある. なお,下の練習 B1.63は, フィボナッチ 千

解決済み 回答数: 1