学年

質問の種類

数学 高校生

(3)の問題の解説の最後の4ってどこから来たんですか?教えてください!!お願いします

事柄E の起こり方が通りあり、その おのおのの起こり方に対して事柄 F の起こ り方がn通りあるとき, 「E, Fがともに (あるいは続けて) 起こる場合の数」 は mn 通り ば,求める記入の仕方が得られる. (3) まず, 8つの数の和が偶数となるのはどのような ときか考えよう. 一般に,偶数,奇数の和の偶奇について, (偶数) + (偶数) = (偶数), (奇数)+(奇数) = (偶数), 積の法則 (偶数)+(奇数)=(奇数) を用いると,一番左の縦の列の記入の仕方は 3.26通り である. である. 他の縦の列の記入の仕方も同様にそれぞれ6通 りであるから, 再び積の法則を用いると, 記入の仕 方は全部で となる. 6.6・6・6=6通り (2) 1,2,3 すべての数字を用いて記入したものを直 接数え上げようとすると, 1, 2, 3 をそれぞれいく つずつ用いて記入するか場合分けをして計算するこ とになり、やや面倒である. そこで解答では, (1)で求めた記入の仕方が (i) 1, 2, 3 すべての数字を用いる場合, さらに,(2)の記入の仕方では, 2 (偶数) の記入 されるマス目の個数が1以上4以下であることに 着目して, 「2 (偶数)」 と 「1または3 (奇数)」が それぞれいくつ記入されるかと,そのときの8つ の数の和の偶奇を表にすると,次のようになる。 2 (偶数) 1または3 (奇数) 8つの数の和の偶奇 1つ 2つ 3つ 4つ 7つ 6 つ 5つ 4つ 奇数偶数 奇数偶数 よって、8つの数の和が偶数となるような記入の 仕方には,次の(ア)(イ) の2つの場合がある. (ア) 221または3を6つ記入する場合. (イ) 2を4つ 1または3を4つ記入する場合. 解答では、(ア)の記入の仕方を 2 2 2つの2を記入 2列の上段または下段に 一方,縦の列に記入する数字の組合せに着目し, 次のように解くこともできる. (3)の別解) 縦の列に記入する数字の組合せは {1, 2}, {1,3}, {2,3} の3組あり, 2が記入されている縦の列 2 3 の残りのマス目に 1 2 1または3を記入 2 3 3 1 残りの縦2列に 1 1 2 3 1または3を記入 の順に考えた. それぞれの記入の仕方は順に 4C2・22=24通り, 2・2=4通り, 24通り であるから, (ア)の記入の仕方は である. 24.4.4=384 通り また、(イ)の記入の仕方を 2 2 22 縦 4列の上段または下段に 4つの2を記入 残りの4マスに1または3 {1, 2} の2数の和3は奇数, {1,3} の2数の和4は偶数, {2,3} の2数の和5は奇数 であることに着目すると、 表に書かれている8つ の数の和が偶数となるような記入の仕方には,次の (ウ),(エ)の2つの場合がある. (ウ){1,3} で縦 2列, {1, 2} または {2, 3} で縦 2列を記入する場合. {1,3} で縦 2列を記入する仕方を考える. 記入する縦の列を4列から2列選び,さらに, それぞれ1, 3 を表の上段, 下段に記入すると考 えると, {1,3} で縦2列を記入する仕方は 2・22=24通り 次に,この記入の仕方それぞれに対し、残った 縦2列を {1, 2} または {2,3} で記入する仕方 を考える. 記入する数字の組合せの選び方が22通りあ り,それぞれに対して表の上段, 下段への記入の 仕方が 22通りあるから, 縦 2列を {1, 2} また は{2,3} で記入する仕方は

未解決 回答数: 1
数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0