学年

質問の種類

数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
世界史 高校生

空欄の部分ってなにが入りますか??

第Ⅱ部 国際秩序の変化や大衆化や大衆化と私たち 第6章 経済危機と第二次世界大戦 2 ファシズムの台頭 【ドイツの拡張政策】 ・ベルサイユ条約破棄→再軍備 ・民族自決を強く主張 1938年オーストリア 併合 チェコスロヴァキア →ミュンヘン会議開催 ・ドイツとの戦争回避が目的 ・ドイツ、イギリス、フランス、イタリアが参加 ・イギリスのチェンバレン →1939年独ソ不可侵条約締結 ・世界に衝撃が走る 明治 ドイツとソ連 ・ドイツの東進に不安を持つソ連 イギリス、フランスとの連携を主張するも CE 1868年~ ・1939年 ヒトラーがスロヴァキアを独立させ、実質支配 チェコを保護領化 チェコと分離させた 近代 大正 のドイツ人居住区スデーデン併合を強く主張 1912年~ スデーデで _首相によりドイツの要求を容認=宥和政策 1926年~ に招かれず→不信感 =チェコスロバキア消滅 チェコ ドイツ (6) ズデーテン併合が決定 →ドイツのものになった ベルリン O スロヴァキア 独立 ズデーテンランド ◎プラハ 現代 昭和 1945年~ オーストリア ワルシャワ O ポーランド チェコスロヴァキア 17 ブダペスト ハンガリー ドイツのゲルマニの人が住んでいる。 352 ドイツが領土を増やそうとしている

回答募集中 回答数: 0