学年

質問の種類

数学 高校生

38の問題で、なぜ解ⅱのようになるのでしょうか?恒等式がよく分かりません。また37もなぜ恒等式を使うのかよく分かりません。よろしくお願いします

60 60 第3章 図形と 基礎問 61 37 定点を通る直線 直線 (2k+1)-(k-1)y+3k=0はkの値に関係なく定点を 通る。その定点の座標を求めよ、 38 交点を通る直線 2直線x-2y-3=0, 2x+y-1=0 の交点と点 (1,6)を通 る直線の方程式を求めよ. の値に関係なく」 とあったら、 「kについて整理」 して、 恒等式 (Ⅲ)にもちこむのが常道です。 精講 32 によれば, 与えられた2直線の交点を求めれば, 求める直線の通 る2点がわかるので,この方程式が求まります。 ((解I)) 解答 (2k+1)-(k-1)y+3k=0 より(x+y+k(2x-y+3)=0 <kについて整理 しかし,同様のタイプの問題の将来への発展を考えると, ポイント の公式を利用できるようにしておきたいものです。 ((解Ⅱ)) 解答 この式が任意のについて成りたつとき x+y=0 (解I) (通る2点より直線の方程式を求める方法) [x=-1 x-2y-3=0 fx=1 21-y+3-0 Ly=1 恒等式の考え方 り [2x+y-1=0 y=-1 よって, 定点(-1, 1) を通る. よって, 求める直線は2点 (1, -1), ( 1,6) を通る. 38 のポイントについて .. 1+1 +1=-1-6 (x-1) 5 y=−1/2x+1/2 f(x,y) +kg(x,y) = 0 ① が任意のkに対して成りた つとき, {f(x, y)=0 \g(x, y)=0 が成りたつ。 この連立方程式が解 (Io, yo) をもてば,①はf(x,y)=0と g(x, y) =0 の交点すなわち, (Zo, yo) を通る。 (解Ⅱ) (f(x,y)+kg(x,y)=0より求める方法 ) (x-2y-3)+k (2x+y-1)=0は2直線の交点を通る. これが点 (-16) を通るとき, 3k-16=0 k-16 よって, 7x+2y-5=0 ポイント 係数がんの1次式で表されている直 ポイント 第3章

解決済み 回答数: 1
数学 高校生

青チャートです。 このページの練習問題の(1)なんですけど、他の例題や(2)は、結論から変形して条件を使って証明している感じなんですけど、(1)は条件を変形して結論に持っていく解答になってて、これはどういった理由こういうアプローチの仕方の違いなのですか。どこに目をつけたらそ... 続きを読む

解答 (2) a+b+c=ab+bc+ca=3のとき, a, b, cはすべて1であることを証明せ よ。 指針 まず, 結論を式で表すことを考えると、次のようになる。 (1) a,b,c のうち少なくとも1つは1である ⇔ a=1 または 6=1 または c=1 ⇔a-1=0 または 6-1=0 または c-1=0 ⇒ (a-1) (6-1)(c-1)=0 ★ (2) a, b, cはすべて1であるα=1 かつ 6=1 かつc=1 ⇔a-1=0 かつ 6-1=0 かつ c-1=0 (a-1)+(6-1)+(c-1)=0 よって、条件式から,これらの式を導くことを考える。 ②13 (1) (2) 142x CHART 証明の問題 結論から お迎えに行く (1) P=(a-1) (-1) (c-1) とすると P=abc-(ab+bc+ca)+(a+b+c)-1 abc=1とa+b+c=ab+bc+ca を代入すると P=1-(a+b+c)+(a+b+c)-1=0 よって α-1=0 または 6-1=0 または c-1=0 したがって, a, b c のうち少なくとも1つは1である。 (2)Q=(a-1)+(6-1)+(c-1)2 とすると Q=a+b2+c-2(a+b+c) +3 ここで, (a+b+c)=a+b2+c2+2(ab+bc+ca) るから ゆえに よって a+b2+c2=(a+b+c)2-2(ab+bc+ca) =32-2・3=3 Q=3-2・3+3=0 α-1=0 かつ 6-1=0 かつ c-1=0 したがって, a, b, cはすべて1である。 指針 (1) の... の方針 結論から方針を立てる ことは,多くの場面で有 効な考え方である。 |ABC = 0 ⇔A=0 または B=0 またはC= 0 <指針(2)の__★の方針 実数 A に対し A'≧0 [等号はA=0のとき成 り立つ。] これを利用した手法であ る。 A'+B'+C2=0 ⇔A=B=C=0 15 a $16 ◎17 練習 a b c d は実数とする。 ④ 26 1 + + a 1 1 b のとき,a,b,cのうちどれか2つの和は 0 である 1 a+b+c C ことを証明せよ。 (2) a2+b2+c+d=a+b+c+d=4のとき, a=b=c=d=1であることを証明せ よ。 p.49 EX17

解決済み 回答数: 1
生物 高校生

画像の赤線部の2+3や4+5+6は何を表しているのでしょうか🙏 よろしくお願いします!

られるのだ Sllie 資料 11 分節遺伝子の発現のしくみについて考えよう! ショウジョウバエを用いてある特定の遺伝子の機能を調べる場合, その遺伝子が発現しない 突然変異体を作成して、正常な個体と比較する手法が用いられることがある。 図14①と②は,それぞれ, 正常な個体において, ギャップ遺伝子群に属する遺伝子Aと 伝子Bが発現する領域を示している。 また, 図14-③は、正常な個体におけるペアルール遺伝 子群に属する遺伝子Cの発現領域を示している。 図14-④は,遺伝子Aが発現しない突然変異体における遺伝子の発現領域を示し, 図14-5 は、遺伝子Bが発現しない突然変異体における遺伝子Cの発現領域を示している。 図をもとに,遺伝子A,遺伝子Bおよび遺伝子Cが,互いの発現にどのように影響を与えて いるかについて考えよう。 ①遺伝子Aの発現領域 ( 正常な個体) ②遺伝子 B の発現領域 (正常な個体) 5 前部 ギャップ遺伝子群 後部 各遺伝子の発現領域を, 青く染色している。 ③遺伝子の発現領域 ( 正常な個体) 正常な幼虫 ④ 遺伝子の発現領域 正常な幼虫 ⑤ 遺伝子の発現領域 (遺伝子Aが発現しない突然変異体) (遺伝子Bが発現しない突然変異体) ペアルール遺伝子群 7 1 7 2+3 4+5+6 123 一部の組織が欠落した幼虫 一部の組織が欠落した幼虫 図14 さまざまな分節遺伝子の変異体 1234567 正常な幼虫 考察 の ポイント ●ギャップ遺伝子群に属する遺伝子Aと遺伝子Bが発現したあとで,ペアルー ル遺伝子群に属する遺伝子Cが発現する点に着目しよう。 ●遺伝子Aおよび遺伝子Bが発現しない突然変異体における遺伝子の発現 領域の変化に着目しよう。 また, その変化と遺伝子A, 遺伝子Bが本来発現す る領域との間にどのような関係があるか考えよう。

解決済み 回答数: 1
数学 高校生

2021②-5 ①蛍光ペンを引いたところの問題でいうところのカキクなのですが、前に出てるaをそのまま2乗してはいけないのですか?答えにはaの2乗=a➕1とあり、確かに途中でウエオのところでaはすでに答えが与えられてるけど、それを2乗したら出てくるはくるのですが、なぜここで... 続きを読む

44 日 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第5問 (選択問題(配点 20 さま 1辺の長さが1の正五角形の対角線の長さをαとする。 (1) 1辺の長さが1の正五角形 OA,B,CiA2 を考える。 第1日程 数学Ⅱ・数学B 45 (2) 下の図のような, 1辺の長さが1の正十二面体を考える。 正十二面体とは, どの面もすべて合同な正五角形であり. どの頂点にも三つの面が集まっている へこみのない多面体のことである。 a A2 C₁ A1 B1 10. 1+30 B2 [C A: 0 B D 110 とされる。キリによ! すべて 4点( ZA,CB=31 CiA1A2 アイとなることから,AA2と BC」 は平行である。ゆえに 面 OABICA2に着目する。 OA」 と A2 B1 が平行であることから OB1=0A2+A2B1=0A2+ OA₁ AA= ウ BIC である。 また に であるから 1 BC1= 1 ウ AA2 T (OA2-OA) ウ で絞り立てみ 正 |OA2OA1|2|AA2|2 正方形ではな =80-80 + a ク また, OAとABIは平行で,さらに, OA 2 と AC も平行であることから に注意するとはない る。 BICI=B1A2+ A20+ OA] + AC1 ウ =- OA-OA2+OA」 + OA2 I - オ OA2- OA₁ 0=ab+adah となる。 したがって 1 I ウ ケ コ OA OA2= + でない を得る。 (数学Ⅱ・数学B第5問は次ページに続 補足説明 ただし、 サ は,文字 αを用いない形で答えること を得る。 (数学Ⅱ・数学B第5問は次ページに続く。) が成り立つ。0に注意してこれを解くと,a= 449-

解決済み 回答数: 1