学年

質問の種類

数学 高校生

ガウス記号について理解が浅いのですが、写真の赤線の所はなぜマイナスがでてくるんですか?

500 第8章 整数の性質 *** 例題274 ガウス記号 (1)正の実数xを小数で表したとき,次の値をガウス記号を用いて表せ。 (ア) 小数点以下を切り上げた数(イ) 小数第1位を四捨五入した数 (2) [x+y]-[x] - [y] のとり得る値を求め 2つの実数x,yに対して, よ. 考え方 (1) (ア)は, たとえば, 小数点以下を切り上げると2になる数は, 1.1, 1.8, 2 などが当て はまり,1は当てはまらないことから、1<x≦2 を満たす x である. これを一般 の整数nについて考え,ガウス記号の定義を利用する。(イ)も同様。[] 解答(n-1<x≦n (nは整数)のとき,正の実数xの 小数部分を切り上げた数はnとなる. このとき, -n≦x<-n+1 [-x]=-n Focus (OFF(X)= よって, n=-[-x] より,求める数は, 601 -[-x] 830-1 1 (1) n-1/2/2x<n+1/12 (nは整数)のとき,正の実数 (イ) 71. -xの小数第1位を四捨五入した数はnとなる. このとき、n≦x+ +1/12/<n+1より、 =n よって求める数は1/2 Spot =(1-)!! (2) 0≦x<1,0≦β<1 とすると, x=[x]+α, y=[y]+β と表せるので __ x+y=[x]+[y]+a+ß (0≤a+B<2) (i) 0≦a+β<1のとき [x+y]=[x]+[y] (ii) 1≦a+β<2のとき -1 [x+y]=[x]+[y]+1 よって, (i), (i)より, $30 1- [x+y]-[x]-[y]=0, 1 -*=1 ガウス記号の定義を 利用できるように不 等式を整理する. caf10000 Ft ガウス記号については,まず具体的な数で実験する

回答募集中 回答数: 0
数学 高校生

帝京大学の数学の過去問です。 解説と答えをお願いしたいです。

[3] 下図のような三角形ABC と, その上を移動する3点P. Q. R がある。 点Pは点Aから点Bまで毎秒1の速さで移動する。点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは、点CからAまで毎秒 1/30 3点P. Q. R が同時に移動し始める。 (1) 三角形ABCの面積はアイウである。 (2) 移動し始めて1秒後。 PQ の長さは・ キ コサ 10. クケ エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後、三角形 PQR の面積は 三角形BPQの面積は チッ ソタ の速さで移動する。 ナニ スセ テト である。 である。 (4) (1) 変量xの標準偏差が4. 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B 得点 3 D E F G H I J 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は、 4点であった。 この修正を行うと、平均値は修正前から エオ点減少する。 更に、 生徒Gに加えて、 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと、データの分散は生徒Gと生徒E の得点の修正前とくらべてカ ただし カには①~②からいずれかを選び なさい。 ⑩ 増加する ⑩ 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(xーキク〉とする。 変量yの平均値は0. 分散は ケコ サシとなる。

回答募集中 回答数: 0