学年

質問の種類

数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
数学 高校生

カッコから下が理解できません。教えて欲しいです。

8 xa-2 より a2-2a-3)x a+1)(a-3)x ≠-1,3 e=_1 a-3 の -1 のとき り0.x=0 +y=1 を のとき 0.x=4だ より |||||||||| となりx=1を解にもつから適する。 よって, k=3, 共通解は1 18xかりを消去して、係数が0になるときと、 0にならないときに分ける。 ax+2y=a0~...... ① x+(a+1)y=a+3 ...... ② とする。 ① x(a+1)-② ×2 より a(a+1)x+2(a+1)y=a(a+1) -L 2x+2(a+1)y=2(a+3) (a²+a-2)x =a²-a-6 (a+2) (a-1)n=(a+2) (a-3) αキー2, 1のとき ta-3 2+(3y-3)x+2y2-5y+k=0 とおき, æについての判別式D をと D₁ (3y-3)2-4(2y2-5y+k) =y2+2y+9-4k さらに, D をりの2次式とみて D=0 の判別式D2をとり D2=12-9-4k)=0とする。 4 よって, k=2 このとき,与式は 2+(3y-3)x+2y2-5y+2 =x2+(3y-3)+(2y-1)(y-2 =(x+y-2)(x+2y-1) ③ 別解 数Ⅱで学ぶ恒等式の考えを利 のとき き 1941 ある方程式 x= a-1 このとき, ①に代入して a(a-3) a-1 +2y=al 2y=a(a-1)-a(a-3)__2a a-1 a-1 a-1 含む方程式 =α+1 は ときは,ク を比べれに き “解は S + a y= 1 なわち α=-2のとき, ③より0.x= 0 だから解はすべ ての実数で, 1, ②ともx-y=1と なる。 0) のと a=1のとき, x=bla よって, して、次 =4 +1)y= x2+3xy+2y2=(x+y)(x+2y) 与式=(x+y+a)(x+2y+B) の形に表せる。 与式=x2+3xy+2y2 +(a+B)+(2a+ として係数を比較する。 a+β=-3 2a+β=-5 ...... ② aβ=k ③... ①,②を解いて, α=-2, B ③に代入して, k=2 このとき (与式)=(x+y-2) (x+2 ③より0.x=-6だから解はない。 20 不等式を解いて,解を数直線 0-1+A 「αキー2, 1のとき a-3 x=- a-1 y= α=2のとき a a-1 x-y=1を満たす (x, y) の組 a=1のとき 2n2-9n-5≤0 (2n+1)(n-5)≤0 -/12/ ≤ n ≤5 0-S -110 1 2 3 解はない。 として整理し,まず, xについて よって, 整数は6個

解決済み 回答数: 1