学年

質問の種類

数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0
数学 中学生

問9と問10の(3),(4)の解説をお願いします

問 9 次のような手順で書く四角形ABCD は平行四辺形になる。このとき次の(1) (2) の問に答えなさい。 手順① ノートのけい線上に, 3cmの線分AD をひく。 (2) A+ 3 ①とは異なるけい線上に, 3cmの線分BCをひく。 線分AB, DC をひく。 (1) 仮定にあたるものとして正しいものを次のア~エの中からすべて選び, 記号で答えなさい。 【知・技 2 ア,AD//BC 1. AB//DC (ウ.AD=BC (2) 四角形ABCD は平行四辺形になることを次のように証明した。 このとき,次の(i) (ii)について答えなさい。 【思・判・表 各2点 (ii) (b)〜(e)にあてはまるものをかきなさい。 エ. AB=DC 四角形 ABCD に対角線ACをひくと、△ABCと△CDAができ、この2つの三角形は, 三角形の合同条件である(a)が成り立つから、△ABCと△CDAは合同である。 合同な図形の対応する角は等しいから,(b) = (c)となり, (d)からAB//DCである。 また仮定から、(e)がいえるので, 四角形ABCD は平行四辺形になる。 (i) (a)にあてはまるものを次のア~オの中から1つ選び, 記号で答えなさい。 ア. 2つの角が等しい イ. 2つの辺が等しい ウ. 1 組の辺とその間の角がそれぞれ等しい エ.2組の辺とその間の角がそれぞれ等しい オ.3組の辺がそれぞれ等しい (2) AD//BC,AB=6cm,CD=6cm (3) AD=5cm,BC=5cm,∠A=50℃, ∠B=130° U 問 10 次の四角形ABCD で, いつでも平行四辺形になるものには○、いつでもなるとはいえないも かきなさい。 【知・技 各2点計8点】 (1) ∠A=120°, ∠B=60°, ∠C=120°, <D=60° 計10点】 (4) 対角線ACで2つの三角形に分け、その2つの三角形が合同であるとき 4

回答募集中 回答数: 0