学年

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

解き方がほんとにわからないです

1. 電池の起電力と内部抵抗を調べるために、電池と可変抵抗を図のように 子 する。 はじめ可変抵抗の抵抗を最大にしておき、スイッチを入れ、 [EV[V]と 抗値を少しず [A]を測り、スイッチを切る。 つ小さくしながら同じ測定を繰り返す。 すると図9のような結果が得られた。 V(V) 15.0 10.0 5.0 図 A 0 1.0 2.0 3.0 I(A) 9 wwwwww 4 電池の起電力 E[V) と内部抵抗 (Ω)はそれぞれいくらか。 それぞれの解 群のうちから正しいものを……つずつ選べ。 E- 6 5 の解答群 ① 2.5 ② 5.0 7.5 ④ 10 ⑤ 12.5 15 6 の解答群 10 ② 2.5 5.0 ④ 6.0 ⑤ 10 5 可変抵抗で消費される電力」 P(W) は端子電圧の関数としてどう表され るか。 次の①~④のうちから正しいものを一つ選べ。 0 + V₂ 7 © (E-V)V Ⓒ + Ev +-v 6 電力Pが最大になるのは端子電圧がいくらのときか。次の①~④のう ちから正しいものを一つ選べ。 V= 8 1 0 ④ E 2. 追加 問2抵抗値が R の抵抗二つと起電力がEの電池二つを, 図2の回路(a), (b)の ように接続する。 それぞれの回路で電流計を流れる電流の大きさを1. Iv とするとき, I In の大小関係として正しいものを、下の①~⑩のうち から一つ選べ。 2 EL Iold 抵抗一つを 電池一つに つないだとき の電流とする。 (b) (a) 図2 ①=v=Lo 21<<1 1=1<1 ⑤1<<1 ⑥1=1<1 ⑦ ⑧1.<<I 1<I<h 1<1-1

未解決 回答数: 1
物理 高校生

教えてください。よろしくお願いします。

図のような電気回路を作成した。 R1 は12Ω, R2は24Ω, R3 は 15Ωの抵 抗値をもつ抵抗で,抵抗 R4 の抵抗値 は未知である。ABは一様な太さを もつ長さ 60cm の抵抗線で,1.0cm 当 たり 1.0Ωの電気抵抗をもつ。点Mは AB間において自由に動かすことがで きるものとする。 Cは電気容量 1.5 μF のコンデンサーである(ただし, 1μF=10-6F)。電圧36Vの直流電源 と2つの電流計の内部抵抗は,いずれ も無視できるものとし、各回路素子の RA R3 2 0 15 0 15Ω S2 R1 D R2 E 24 Q 12Q C 1.5 μ F AA 電流計2 A ↓MB 60 36V 電流計1 (A S1 接続に使用した導線の電気抵抗も無視できるものとする。最初,2つのスイッチ S1, S2 は開いており,コンデンサーCに電荷は蓄えられていないものとする。 まず,M を ABの中点におく。スイッチ S1 だけを閉じ、その後十分に時間が経過した として、次の問いに答えよ。 解答は,単位も含めて記すこと。 A (1)電流計1を流れる電流はいくらか。 (2)電流計2を流れる電流はいくらか。 (3) コンデンサーCをはさんだDM 間の電位差はいくらか。 (4) コンデンサーCに蓄えられた電気量 Q および静電エネルギーWは,それぞれいくら か。 次に,AB間のある位置に M をおき, スイッチ S1, S2の両方を閉じた。十分に時間が 経過した後に電流計1を見ると、 電流値は2.1Aであった。このとき、次の問いに答えよ。 解答は,単位も含めて記すこと。 (5) DE間の合成抵抗はいくらか。 (6) 抵抗 R』の抵抗値はいくらか。 (7)このとき、コンデンサーCに電荷がまったく蓄えられなかった。このことから, AM間の長さを求めよ。

解決済み 回答数: 1