学年

質問の種類

数学 高校生

二次方程式の解についての質問です。 マーカー部分ですが、なぜこの形になるのかがわからないです。②の式の左辺を変形したらいいと書いていますが、どう変形したらそうなるのか教えて欲しいです。 よろしくお願いします🙇🏽

発例題 展 52 2次方程式の解についての証明問題 <<< 基本例題46 ① 000 a b は定数とする。 方程式 (x-a)(x-b)+x+1=0 の2つの解をα,Bとす。 ると,方程式(x-a)(x-β)-x-1=0 の2つの解は a, b であることを証明 せよ。 CHART 解と係数の問題 GUIDE 解と係数の関係を書き出す すると、この例題の 一解答の方程式 ①,②から。 条件は α+β=a+b-1, αβ=ab+1 結論は a+b=a+β+1,ab=aβ-1 となり,③ から ④を示すとよいことになる。 ...... 4 解答 (x-a)(x-b)+x+1=0 の左辺を展開して整理すると x2-(a+6-1)x+ab+1=0 ① この2つの解がα, β であるから,解と係数の関係により ゆえに a+β=a+b-1, aβ=ab+1 a+b=a+β+1, ab=aβ-1 このことは, a, b が2次方程式 x2-(a+β+1)x+αβ-1=0 すなわち (x-α)(x-β)-x-1=0 の解であることを示している。 Lecture 因数分解の利用 x²+px+g=0 の2つの 解がr,s ⇔ r+s=-p rs=q GUIDE の方針により, 1 を移する。 FotstJ ■x2-(和)x+ (積) = 0 ②の左辺を変形。 2次方程式の解α, β に対して, (x-α)(x-B), (-a) (-B), (α-)(B)の形の式 が出てきたときは 平 ax2+bx+c=0 の2つの解がα, ßax+bx+c=a(x-a)(x-β) を利用することで, あざやかに解決できることがある。 [上の例題の別解] (x-a)(x-b)+x+1=0 の2つの解がα, β であるから 左辺は, (x-a)(x-b)+x+1=(x-a)(x-B)と因数分解できる。 (x-a)(x-B)-x-1=(x-a)(x-b) ゆえに よって, ← 移項 (x-a)(x-β)-x-1=0 の2つの解は a, b である。 J 全宗

解決済み 回答数: 1
数学 高校生

数学的帰納法について質問です。 マーカー部分、なぜ急に不等式が出てきているのか、またマーカー部分は何より小さいのか全くわからないです。 解説していただきたいです。よろしくおねがいします。

準 nを3以上の自然数とするとき, 不等式 4"> 8n+1 CHART (A)を証明せよ。 すべての≧で成り立つことの証明 GUIDE HART [1] 出発点 n= のときを証明 生 [2]n=k(k≧) のときを仮定し, n=k+1のときを証明 本問では「n≧3 のとき」という条件であるから,まず,n=3のとき不等式が成り立つ ことを証明する。なお、n=k+1のとき示すべき不等式は 4'+'>8(k+1)+1である。 不等式A>B を示す代わりに A-B>0 を示す。 |答 [1] n=3のとき (左辺) =4=64, (右辺) =8・3+1=25 よって, n=3のとき, (A)が成り立つ。 [2] k≧3 として, n=k のとき (A) が成り立つ,すなわち 4k8k+1 川 <64>2503 「3」を忘れずに。 が成り立つと仮定する。 n=k+1のときの(A) の両辺の差を考えると 4+1_{8(k+1)+1}=4・4-(8k+9) 48+1)-(8k+9) =24k-5>0 ← k≧3から。 すなわち 4k+1 > 8(k+1)+1 よって, n=k+1 のときも (A) が成り立つ。 ◆ここで上の仮定 4>8k+1 を活用。 40 であるから 4>8k+1 ) の両辺に4を掛けても、 [1], [2] から, 3以上のすべての自然数nについて(A)が成り不等号の向きは変わらな 立つ。 Lecture 出発点を変えた数学的帰納法大 「nが自然数のとき」ではなく、 「n≧m のとき」のような, ある特定の数以上のすべての自 然数について成り立つことを証明するには,出発点を変えた数学的帰納法を利用する。 その手順 は、次の通りである。 の場合、例題 26 での数学的帰納法。 [1] n=m のときを示す。 ←m=1の場合が, [2]n=k(ただし, k≧m) のときを仮定して, n=k+1 のときを示す。 注意 上の例題で n=1, 2 のとき, 4”は順に4, 16, 8n+1は順に 9, 17であり, 4">8n+1 は成り立たない。よって,機械的に「n=1 のとき,不等式は成り立つ。」など と答案に書かないようにしよう。

解決済み 回答数: 1
英語 高校生

いつもリーディングの勉強を優先してたためかリスニングがリーディングより点数が10点~15点程低く全体の点数の足を引っ張ってるので困ってます…今のリスニングの実力は11月3日の駿台・ベネッセ模試で47点程度です。リスニングの対策については速読用長文音声をよく聞くか、模試数日前... 続きを読む

駿台 大学入試完全対策シリーズ 20150 大学入試センター試験 センター試験を 完全攻略!!!!! 詳細な解説で 得点力アップ! わかりやすい 出題傾向と 大学入試 全レベル問題集 SUPER LECTURE 共通テスト 英語リスニング KODER SEOR 駿台のオリジナル問題でセンター対策は完璧予想問題 6回にチャレンジ レール レベル 集中講義 2 共通テストレベル音声 受ける 大学入学 英語リスニング 2022 601 共通テスト 過去問研究 英 テスト対策 No. 語園 リスニング/リーディング 計24回分収載! 河合 スマホ・PC対応 渡辺淳志・ オリジナル 本試験 2021年度(第1日第2日) 計4回 試行調査 4 英語 STRO 4 センター試験 12 1 冊で テスト 高得点を目指す! 配 特徴をつかむ! 読み 「こわくない! CD3枚付 •(リスニング) 共に必要な知識や解 が効率的に身につく 知識や解き方を活用して 得点力につなげる リスニング 11回分収載!! 全国入試模試センター編 旺文社 Z-KAI 旺文社 アウトプット リーディング 5000語超を攻略! 学社 ◎英 ↑ 表紙が剥 2023年用 大学入学共通テスト対策オリジナル問 改訂版 共通テスト 大学入学 共通テスト 10分リスニングプレノート 実戦模試 共通テスト 実戦対策問題集 ② 英語リスニング 水野卓 編集部 [リスニング] 多様な発音・1回読みを攻略! 最新傾向に対応! 五がれてるの 写真合成 しました。こ ちらも持っ てます CHART INSTITUTE 共通テスト 本試 験 旺文社 オリジナル模試 5 共通テストの最新情報を こちらで随時更新! 過去間 2日程分 学習診断サイトで アドバイスがもらえる! th ターゲット 友 ↑スクリプト・日 日本語訳付きで英 語の例文や単語 の音声が聞ける ようこちらのアプ リで課金していて いますがあまり使 ってないです。

解決済み 回答数: 1
数学 高校生

(2)のマーカーで囲った部分について質問なのですが、なぜx=4,5とわかるのでしょうか?

79 |発 例題 <<< 標準例題 36 ★ 展 46 連立不等式が解をもつ条件 00000 x<6 連立不等式 ① 2x+3≧x+α の解について,次の条件を満たす定数 αの 値の範囲を求めよ。 (1) 解をもつ。 (2)解に整数がちょうど2個含まれる。 2章 CHART & GUIDE 連立不等式の解の条件 数直線で考える 1 各不等式を解く。 不等式 ② の解はx≧〇(αの式) ②の形。 ... 2 数直線上に,条件を満たすように範囲 ① ②' を図示することでαの不等 式を作り, それを解く。 例えば, (1) では ① ②'の共通範囲が存在する ことが条件であるから,右のような数直線を考 えて ○<6 という (αの) 不等式を作る。 6 x 解答 ②を解くと xa-3 (1) 連立不等式が解をもつための条件は α-3<6 これを解いて a<9 (2) α <9 のとき,①,②' の共通範囲は ...... a-3≦x<6 これを満たす整数xがちょうど2個あるとき, その値は x=4,5であるから, α-3が満たす条件は ① -113+1523-11-2009 3 < a-3≦4 各辺に3を加えて Lecture 不等号に=が含まれる・含まれないに要注意! 上の解答でをα-3≦6 としてしまうと, α-36 すなわち α=9 のとき②' が x≧6 となり、①と②' の共通範囲が存在しなく なるので誤りである。 ① a-3 ① 3 4 5 6 x a-3 (1) α=9のとき ② 発展学習 また,イについても, 3, 4 を α-3 の値の範囲 に含めるかどうかに注意が必要である ( →右図参 照)。 6 x (2) 3=a-3(a=6) のとき (2) a-3=4(a=7)のとき 心に 3 4 5 6 x 1456 整数の解は3個で, ダメ。 整数の解は2個で, OK。 X TRAINING 46 ⑤ 3x-7≦5x-3 の解について,次の条件を満たす定数 αの値の範囲を求

解決済み 回答数: 1
TOEIC・英語 大学生・専門学校生・社会人

英語の問題です。 教えて欲しいです🙇‍♀️

(2) I had my teeth 1 check 1( )に入る最も適切な語句を ① ~ ④から選びなさい。 (1) He went on speaking as if she ( 1 can't 2 hasn't ) there. Son 3 wouldn't ) by a dentist this morning. ult niles 3 checking wahiwon (青山学院大 ) ④weren't pomibinand (岩手医科大) 24 to check 2 checked (3) You should not keep any pets ( 1 after 2 unless ) you can take good care of them. 3 when (中央大) ④which 1 as 2 in ) all be correct. ②anytime (6) If the weather ( ①must have been (4) This town will change ( ) another ten years. (5) Those may not ( 1 absolute ) fine yesterday, I would have done the laundry. 2 is (7) Studying takes up a lot of my time during the week, ( ) little time for hobbies. (芝浦工業大) since 3 of (國學院大) 3 everything ④necessarily (関西学院大 ) ③ wasn't 4 had been (皇學館大) ①1 has left (8) Have you heard the rumors ( 1 that 2 what leaves leaving 4 left ) Susan has returned to this town? ③ which (麗澤大) ④ who 1 by (9) What was found in this experiment is ( 2 for (10)( ) what to say, she remained silent. ) great importance to researchers. 3 in (立命館大) 4 of (愛知工業大) 1 Not knowing 2 Being not knowing ③No knowing ④Knowing no (11) I tried to ( 1 have 2 make ) her to tell me what happened last night. 3 get (十文字学園女子大) 4 let How gimon and (12) Do what you like, as ( 1 far 2 much B in 1 in 2 with bnat am ) as you leave me alone. 3 long (13) This tool is dangerous. Please read the instructions ( (14) If I hadn't drunk so much last night, I ( 1 feel (15) I wish you 1 attend (16) If I ( 1 were ) 2 will feel ) the party yesterday. 2 were attending ) much better than I do right now. ③ would feel ③ have attended (中京大) 4 would have felt (目白大) ④had attended ) in your situation, I would be more careful about what you post on social media. (フェリス女学院大) 4 many ) care. (聖隷クリストファー大) at ④take gwol 3 will be (南山大) ④would be

回答募集中 回答数: 0