学年

質問の種類

物理 高校生

問5で、台車から手を離した位置を基準にしているのに−mgAsin30°となっているのはなぜですか??

千葉大理系前期 2023年度 物理 31 図のように、傾きの角30°のなめらかな斜面上に質量mの台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は、斜面の上端に固定された定滑車と床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお, 台車, 定滑車,動滑車,糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く、なめらかに回るものとする。 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L,なら びに、台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさをgとす る。 空気抵抗や摩擦は無視できるものとして、以下の問いに答えなさい。ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 a tut | 天井 重力の向き 定滑車 台車 m 食じめに、 ように L 30° 図 0000 動滑車 ばねん 床

解決済み 回答数: 1
物理 高校生

問5の力学的エネルギー保存則の、何が台車から手を離した位置の要素で、何が振動の中心の要素なのかがわかりません🙇🏻‍♀️ (個人的には1/2mv^2+1/2kA^2が振動の中心で −mgAsin30°が手を離した位置の要素だと思いました)

千葉 1 千葉大理系前期 図のように 2023年度 物理 31 角30°のなめらかな斜面上に質量m の台車が置かれ, そ の台車には軽く伸び縮みしない糸の一端が取り付けられている。 その糸のもう一 端は斜面の上端に固定された定滑車と, 床と軽いばねでつながれた動滑車を介 して、天井に取り付けられている。 なお、 台車, 定滑車、動滑車, 糸は,すべて 同一の鉛直面内にあり, 台車から定滑車までの糸は斜面と平行, 定滑車から動滑 車および動滑車から天井までの糸は鉛直で, 糸がたるむことはないものとする。 また、2つの滑車は軽く, なめらかに回るものとする。 価 台車が静止しているときの位置をつり合いの位置とする。図のように,このつ り合いの位置から,斜面の最下点までの距離をLとする。なお,距離L.なら びに台車から定滑車までの距離は、後述する単振動による台車の振幅に対し て,十分に長いものとする。また,ばね定数をk, 重力加速度の大きさを gとす る。空気抵抗や摩擦は無視できるものとして、 以下の問いに答えなさい。 ただ し、解答に用いる物理量を表す記号は,問題文中に与えられているもののみとす る。 に その e fi St と 重力の向き 台車 L 30° m 図 ■天井 Grellle 動滑車 ばねん 床 〇問1 つり合いの位置において台車が静止しているときの, 糸が天井を引く力の 大きさを求めなさい。

解決済み 回答数: 1
物理 高校生

なぜ引き合うとしているのですか。逆で考えた場合符号が違い答えが間違ってしまいます。

53.くたてばねによる単振動〉 図のように、なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に, 同じ質量mの穴の開いた小さ い物体A,Bを通した。 物体Aには, ばね定数んの軽いばねをつけ, ばねの他端は棒のO端に固定した。ばねは OP 方向のみに伸縮し,棒 と物体A,Bの間に摩擦はないものとする。さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 x=0- 物体B 接着剤 物体A A,Bが押しあうときは物体AとBは離れないが,引きあうときは引きあう力の大きさが接 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに,ばねはその自然の長さからd だけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, k, g を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2)この振動の周期を,m, k を用いて表せ。 (3)この振動をしているときの物体A, B の速さの最大値を,m, k, bを用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり,Tが 正のときは物体AとBは引きあっているが,Tが負のときは押しあっていることになる。 (4)このとき, 物体Bにはたらく力を, m, g, Tを用いて表せ。 x 軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体A, B の運動方程式を考えることで, Tを,m, k, g,x を用いて表せ。 図 (6) Tをxの関数として, -3d≦x≦ とする。 の範囲でグラフに描け。 ただし, ここではb>3d 次に,接着剤の接着力が小さく, 物体 A, B間の引きあう力の大きさが mg 以上になると, 物体AとBは離れる場合を考える。ただし,離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 物体Bをつりあいの位置から6だけ押し下げ,静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7)運動の途中で物体Bが物体Aから離れるためには,bはある値 6 以上でなければならな い。 bı を,m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを,m,k,g. 6 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

高知大学の過去問です。 画像の問2の答えの出し方が分かりません。 運動量保存則と反発係数の式は立てれましたが、そこから答えにたどりつけません。どうやって解くのでしょうか。 至急教えて頂きたいです。

2023年度 高知大 1 図1に示すような。 滑らかな面 AB, CE を有する台上における物体の運動について考える。 AD 間は水平面, DE 間の形状は鉛直に直径2R[m] を有する半円である。 また, 長さ L[m] の区 BCは粗い面となっている。 はじめに 点Aにばね定数k [N/m)のばねの一端を台に固定し, 他端に質量 M [kg] の物体a を取り付け. ばねが自然長の状態で物体に接するように質量m[kg] の物体b (m <M)を置いた。 物体 a, b の大きさ, ばねの質量 空気抵抗は無視できるものとす る。また物体と物体bの間のはねかえり係数をe. 物体b と面BCの間の動摩擦係数をμ 重力加速度の大きさを〔m/s*〕とする。 このとき,計算過程を含めて、 以下の問いに答えよ。 (70点) 1.図2に示すように物体a を左に押してばねを d[m]だけ縮め、静かに手を離した。この時 物体 b に衝突する直前 (図3)の物体の速さ Vo [m/s] を 求めよ。 2. 物体が物体bに衝突した直後(図4) における それぞれの速さ V [m/s] [m/s] を求めよ。 図1 L 2R A B CD 図2 wwo KI 図3 V₁ www 3. 衝突直後に物体は AB間で単振動を始めた。 その振幅 X (m) を求めよ。 図4 V₁ 01 wwG 問1, ばねの弾性力による位置エネルギーと 運動エネルギーは等しいので Vo' = M d² Vo=dJ [m/s] 問2.物体a,bについて運動量保存則より MV=MV1+mvi 反発係数の式より、 V₁-V evo -evo=サーV1 4. 物体は回転せずに区間 BCを通過した。 区間 BCを通過後(図5)の物体bの速さ102 [m/s] を求 めよ。 図5 5. 物体b は区間DEを面から離れずに通過した (図6)。 このときに,点Eを通過する際の速さ [m/s] が満たすべき条件を示せ。 また、その条 件を満たすの最小値を求めよ。 図6 www 6. 物体bが点Eを通過する瞬間に ばねが最も伸びたとする。 そして 物体 b が水平面 AD 着したときに物体がちょうど1往復した。 そのときのkをR,M を含む形で求めよ。 問1,Vo= d [m/s] 問2、V= M-em d JE m+M (1+e)d M m+M [m/s] [m/s] 問5V3≧JOR [m/s] 12の最小値 [SgR [m/s] 問6,b=gM [N/m]

解決済み 回答数: 1