学年

質問の種類

数学 高校生

この例題9の⑶の問題でaについて整理することまではわかるのですがそのあと何をしてるのかがわからないので教えてください。

22 X 121(3) X 12) 重要 例題 9 掛ける順序や組み合わせを工夫して展開 (2) 次の式を計算せよ。 (1)(x-1)(x-2)(x-3)(x-4) (2) (a+b+c)^2+(b+c-a)+(c+a-b)2+(a+b-c)2 (3) (a+b+c)(a²+b²+c²-ab-bc-ca) 指針 前ページの例題同様, ポイントは掛ける順序や組み合わせを工夫すること。・・・ (1) 多くの式の積は、 掛ける組み合わせに注意。 4つの1次式の定数項に注目する。 (-1)+(-4)=(-2)+(-3)=-5であるから 解答 (1) (与式) = {(x-1)(x-4)}×{(x-2)(x-3)} ={(x2-5x)+4}×{(x2-5x)+6} 練習 ③9 (x-1)(x-4)×(x-2)(x-3)=(x2-5x+4)(x2-5x+6) 共通の式ー 5x が出る。 (2) おき換え を利用して、計算をらくにする。 b+c=x, b-c=yとおくと (5₁)=(x+a)²+(x-a)²+(a−y)²+(a+y) ² (3) ( )内の式を1つの文字αについて整理してみる。 CHART 多くの式の積掛ける順序・ 組み合わせの工夫 p=x-10x+35x²-50x+24 (2) (5)={(b+c)+a}²+{(b+c)-a}² =(x2-5x)'+10(x2-5x) +24 =x-10x3+25x2 +10x²-50x+24 (0+d=4a²+46² +4c² (3) (与式)={a+b+c)}{a²-(b+c)a+b²-bc+c2} =a³+{(b+c)-(b+c)}a² +{a_(b-c)}+{a+(b-c)}^ =2{(b+c)^+α²}+2{a²+(b-c)2} =4a²+2{(b+c)²+(b-c)²} =4a²+2.2(62+c2) 0000 +{(b2-bc+c2)-(b+c)"}a+(b+c)(62-bc+c2) 基本7.8 =a³-3bca+b³ + c³ =a³ + b³ + c³-3abc 400.000 < x2-5x=tとおくと (t+4)(t+6) =t2+10t+24 (x+y)2+(x-y)^ =2(x²+y2) となることを 利用。 ◄(a+O) (a²-▲▲a+) とみて展開。 ②1 P=-2x²+ 次の式を展開せよ。なお, (4) は上の例題(3) の結果を利用してもよい。 (1) (x-2)(x+1)(x+2)(x+5) (2)(x+8)(x+7)(x-3)(x-4) (3) (x+y+z) (-x+y+z)(x-y+z)(x+y-z) (4) (x+y+1)(x2+y^2-xy-x-y+1) ◄(b+c)(b²-bc+c²)=b³ + c³ (3) の結果は公式として使 ってよい。 EXER ③2 (1) 3x2-2 (2) ある 〔(3) 類防衛大] (p.23EX6 が-3 3 次の計算 (1) 5xy2 (3) (-2 ③4 次の式を (1) (a- (3) ( 2c (5) (xi (7) (1 ③5(1)( 数に (2) I で ④6 次の (1) (2) HINT

未解決 回答数: 1
数学 高校生

数学Aです。 (2)の(ⅱ)と(3)の解き方がわかりません。 詳しく教えてください

解答編 p.53 21 図1のような一辺の長さが1の立方体ABCD-EFGH がある。 次の問いに答えよ。 (1) 立方体ABCD-EFGHの面の数 はア,頂点の数はイ,辺の 数はウエである。 図2のように,立方体から3か所 を切り取ると,面の数はオ , 頂 点の数はカ 辺の数はキだ けそれぞれ増加する。 図1 一般に, 凸多面体, すなわちへこ みのない多面体の頂点の数をひ辺の数をe, 面の数をfとするとクが成り立つ。 ア クに当てはまるものを, ①~⑤の キ に当てはまる数を答えよ。 また, うちから一つ選べ。 ⑩ v-e+f=2 ① ute-f=2 ③e-f-v=2 ④f-e-v=2 ~ ある。 (2) 図3のように, 図1の立方体ABCD-EFGHの辺BC上に点 P を,辺 CD 上に点 Q を,CP=CQ=1/12 となるようにとった。 また, 辺DH上には点Xをとった。 (i) 立方体ABCD-EFGH を,3点P, Q, Eを通る平面で立 方体を切ると、その切り口はケになる。 に当ては まるものを、⑩~⑤のうちから一つ選べ。 ⑩ 三角形 ① 四角形 ③六角形 ④ 七角形 - また,四面体 CPQG の体積が 12 (ii) 線分PG, GX, XQ の長さの和 PG+GX+XQ の最小値は - △PQGの面積は 長さは CI= ナ B テ EL ト ②e-f+v=2 ⑤f-ve=2 (3)図3において,CP=CQ=t とすると, APQ が正三角形になるのは t=√√√√ タ のときである。 となる。 ② 五角形 ⑤八角形 B になるのは t=- チ SEL コ サ 図2 時間 12分 + Q 図3 シス t IX 塩H 6 図形の性質 で のときである。 このとき であり, 点Cから △PQGに引いた垂線を CI とすると, CI の

回答募集中 回答数: 0
数学 高校生

写真の下線部はトルエンを中性条件下、過マンガン酸カリウムで酸化した時の半反応式なんですが、酸性条件下の時も、半反応式での生成物は安息香酸イオンになんですか?

+ KOH + H20 補足欄 芳香族化合物と溶媒 芳香族化合物は中 和されて塩になって いるとき以外は水に 難溶である。 芳香族化合物はジ エチルエーテルやベ ンゼンのような有機 溶媒によく溶ける。 ただし, ベンゼン スルホン酸は水に溶 けて強酸性を示し, ジエチルエーテルに 溶けない。 同様な反 共有結合性物質中の各原子の酸化数は,各結合ごとに共有 電子対を電気陰性度の大きい方の原子にすべて属するとして定 義している。 ある原子に属する電子がx個減ると酸化数が増 加し,x個増えると酸化数がx減少する。 トルエンから安息香酸への酸化の場合は次のようになる。 H • HD (HO) HOP -H OHOH. H OH 「変化するところだけ考えると, トルエンのC-H結合の電子対は すべてC原子に属するが, 安息香酸のC-O, C= 0結合の電子 対はすべて原子に属する。その結果,炭素原子に属する電子 が6個減るので、電子を6個失い相手に与える。 中性条件下の酸化還元反応なので、電荷のつり合いに OH LON を用いると、反応式は次式のように表される。 → CiHsCH3 +7OH -- C6H5COO +5H2O +6e MnO4 + 2H2O + 3e ¯ MnO2 +40H ① 式 + ②式×2(e-消去) より CHgCH3 +2MnO4 CeHCOO+2MnO2 + OH +H2O とより、ブ フェノールだけが遊離 するので、これをジ エチルエーテルで抽 出する。 残った水浴 液に塩酸を加えると 安息香酸の結晶が析 出する。 BAHORND 121

回答募集中 回答数: 0