学年

質問の種類

数学 高校生

数2の質問です! 243の(1)の 〜 のところを わかりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

a = ±4のとき 個 a<-4, 4<αのとき 1個 答 1 y=a 4 練習 242 α は定数とする。 方程式 x+3x²-9x-a=0の異なる実数解の 個数を調べよ。 テーマ 111 不等式の証明 x=0のときx+6x2+8≧15x が成り立つことを証明せよ。 応用 考え方 不等式 A≧B の証明・ →差をとって A-B≧0 を示すのが基本。 x≧0のとき,f(x)=(x3+6x2+8)-15xの最小値が0以上であることを 示す。 解答 f(x)=(x3+6x2+8)-15 とすると x 0 1 f'(x)=3x2+12x-15=3(x2+4x-5) f'(x) 0 + =3(x+5)(x-1) f(x) 8 v 0 x≧0において,f(x) の増減表は右のようになる。 第6章 微分法と積分法 よって, x≧0 において,f(x)はx=1で最小値0 をとる。 したがって, x≧0 のとき, f(x) ≧0であるから ( x3+6x2+8)-15x≧0 すなわち x3+6x2+8≧15x 終 243 (1) f(x) = (x3+x) - 2x2 とすると f'(x) =3x²-4x+1=(x-1)(3x-1) f'(x) = 0 とすると x=/1/31 x≧0において,f(x) の増減表は次のように なる。 x 0 0 1-3 1 f'(x) + 0 - 0 + 極大 極小 f(x) 0 1 4 27 0 よって, x≧0において, f(x) は x=0, 1で wm 最小値0をとる。 したがって, x≧0 のとき, f(x) ≧ 0 であるか ら すなわち (x3+x)-2x2≥0 x3+x≧2x2 (2) f(x) =(x3+7x+1)-3x2 とすると f'(x) =3x2-6x+7=3(x-1)+4> 0 よって, f(x)は常に増加する。 また,f(0) =1>0であるから,x≧0において したがって すなわち f(x)>0 (x3+7x+1)-3x20 x3+7x +1>3x2 244 (12x2)'=24x ③ (x3)=3x2 ② (x)'=4x3 ④ (x+3)'=4x3 よって, 4x3 の原始関数であるものは 243 次の不等式を証明せよ。 x≧0 のとき xxx (2) x≧0 のとき x+7x+1>3x2 245 Cは積分定数とする。 (1)(与式)=-3fdx=-3 dx=-3x+C (2)(与式)=7fxdx=7.1/2x++C=1/2x+c

解決済み 回答数: 1
数学 高校生

この問題の ク で、2が間違ってる理由が分かりません。 何故Nの最大値は境界を通るNの値と一致しないのでしょうか?? 0が合ってる理由は分かりますが2がわならないです。。 教えて欲しいです! また、スセソタチで、何故格子点の最大値が答えになるのでしょうか? 解説お願いします!

95-4+18 第3問 (必答問題) (配点 28) 2 y =++N y- もは x,yを実数として、①の2つの不等式, およびx≧0, y≧0 からなる連立不等 式の表す領域をDとする。 こで,x,y 式 ③、④. る連立不等 部分(埃 た、直線 y=-3x [1] あるサプリメントには, 1包が1g入りで10円の顆粒 1錠が0.2gで30円の錠 剤の二つのタイプがある。 N=ア x+yの表す直線をlとすると このことから,x,yが①を れは傾き 含まれる栄養成分は, 顆粒では1包に0.3g, 錠剤では1錠に0.1gであり, 残り の成分はすべて添加物である。 満たす0以上の実数のとき,Nはx=y= コ で最大値 サシをとることがわ 18 かる。 このサプリメントを二つのタイプの価格の合計が180円以下,かつ,含まれる添 加物の合計が3.6g以下となるように使用し、含まれる栄養成分の合計を 0.1×N(g) とするときの最大値を求めよう。 3 顆粒をx包, 錠剤をy錠使用する場合, N= x+y であり,価格,添加物 の合計の条件は3 x+ イ である。 X+24=(F 8 y≤ ウエ かつ オ x+y カキ 大学Ⅱ, 数学 B 数学C第3問は次ページに続く。) ク | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ ①を満たす0以上の実数x, yで,N= アx+yとなるものが存在する ことと, 直線ℓが領域Dと共有点をもつことは同値である。 よってNの 最大値は,直線lが領域 Dと共有点をもつような最大のNの値と一致する ① ①を満たす0以上のすべての実数x, y, N= ア x+yとなること と、 直線 l が領域Dと共有点をもつことは同値である。 よって, Nの最大 値は, 直線ℓが領域Dと共有点をもつような最大のNの値と一致する ② 直線 l が領域Dと共有点をもつとき、領域D に属する点 (x, y) で 直線 上にあるものが存在する。 よって, Nの最大値は, 直線ℓが領域 Dの境界 を通るときのNの値と一致する 直線 l が領域 Dと共有点をもつとき、領域Dに属するすべての点(x,y) が直線上にある。 よって, Nの最大値は, 直線 l が領域 Dの境界を通る ときのNの値と一致する ( ③ かつ ④ で、 N= ことと, の最大値 致する より きNは たがっ 3-2 eが きの 下図 上が x よび (第2回5) しかし、実際に使用するのは1包単位, 1錠単位であるから, x, yが①を満たす 20以上の整数のときを考えると, Nはx=y= ス および, x= セ y= で最大値 タチをとることがわかる。 (数学ⅡI, 数学 B, 数学C第3問は次ページに続く。) (第2回-6)

解決済み 回答数: 1
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

解決済み 回答数: 1