学年

質問の種類

数学 大学生・専門学校生・社会人

この写真の赤線で引いてあるところがわかりません、具体的には、 1本目はX=Ax+Bで、X(0)=0なんだからB=0ではないのか?なぜA=B=0なんですか? 2本目は理解できました、X=Ae^√−λx+Be^-√−λxで、X(0)=0だから0=A+Bで、これはA=B=0でない... 続きを読む

と変数以上の関数について,その偏微分を含んだ微分方程式を偏微分方程式という。 特に次の偏微分方程式 °u du =c? dr? (c>0) at を熱伝導方程式という。 要点1 du 熱伝導方程式 c? at °u (c>0) は,解をu = X(x)T)とおいて解くことがで dx? きる。この方法を変数分離法という。 (1)u=X(x) T()を式(13.5.1) に代入して整理すると, 解説 T(t) c°T(t) X"(x) X(x) (13.5.2) となる。この左辺はtだけの関数であり, 右辺はxだけの関数である。したがって, 式(13.5,2) の両辺はある定数に等しい。そこで, この定数を一とおく。よって,式(13.4.1)は2つの方程式 X"+入X=0 (13.5.3) T'+AC°T=0 に分解する。この2つの方程式を解いて, u=X(x)T()とおけば, 解が得られる。 (2)ここで,微分方程式 X"+AX=0に, X(0) = 0, X(L) =D 0という境界条件が与えられていたとし よう。 もし入=0ならば, X=Ax+B (A, Bは任意定数) と表されるので,、境界条件からA=B=0とな 2-V-Ax と表されるので, これも境界条件からA=B=0と V-Ax る。え<0のときも, X=Ae' + Be なる。したがって, 入>0を仮定できる。 33 え>0のときの解は, X=AcosV入x+BsinV入xである。さらに, 境界条件x(0) = 0なので, A=0である。よって, X=BsinVAxである。さらに境界条件X(L) =D0より, Bsin L、入 = 0 1 を得る。B=0ならばXは恒等的に0となるので, B+0である。よって, sin L入 = 0 である。したがって, LA 入=[ (n=1,2,…) = Nπ, すなわち L P2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学数学の問題です。SIRモデルを題材にした微分方程式です。連立微分方程式で解こうと考え、固有値から固有ベクトルを求めようとしましたが綺麗な値にならず、間違っているように感じました。考え方から回答例まで教えていただきたいです。

問題 14. ある感染病Aに対する SIR モデル d.s -BS(t)I(t) ニ dt dI BS(t)I(t) - っI(t) ニ dt dR 1(t) ニ dt を考える。ここで, S(t)は感染可能者, I(t) は感染者, R(t)は除外者である. また, ある町の人口を Nとすれば, N= S(t)+I(t) + R(t) が成り立つとする. そして, s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N としたモデル ds ニ dt 1 -i(t) :0 50 di 1 ニ dt dr 1 i(t) 50 ニ dt を考える。 さて, N= 1000 とするとき, 感染病 Aが拡大しないようにするには,少なくとも何人にワクチン接種をしなけ ればならないか?ただし, ワクチンの効果は 90%(ワクチンを接種すれば 10人中9人は感染しない)とし, 初期 感染者は 19名,初期除外者は0名,ワクチン接種は感染可能者のみに行うものとする.(8点) (解答欄:必ず途中式や理由などを記載すること) N=100 基本理産激が121大きとき感染者は増にするをめ、 これが 1さり小さくなるとよい。 VC)をつクチン緒の数だとすると. ds s -) icは) - dt 14 AV At。 271 190 こ Io sCt) 13

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 リヤプノフ関数を用いた微分方程式系の安定性解析について勉強をしています。 写真の問題のうち、問23.1の(1)及び問23.2の(3)の解き方が分からないので教えて頂けますと幸いです。原点が中心、半径がルート3の円が不変集合になる理由も併せてお願い頂けるとありがたいです。よ... 続きを読む

23. リヤプノフ関数と安定性* 108 間 23.2 微分方程式系 dy =ーC dt (12) da =リー(=/3-2), (μ は負定数) dt について,次の間いに答えよ。 (1) V(r,g) = (z° +y°)/2 とする. このとき V12) (z,4) を求めよ。 (Ans. -μ(z°/3 -1)a?) (2) (12) の平衡点 (0,0) は安定であることを示せ。 (3) [研究] 点 (o,Yo) が (2o)? + (yo)? <3 を満たすとする. このとき, (zo,10) を通る解はt→8とすると (0,0) に収束することを示せ。 (ヒント. E={(0,9) : -0 <y < 8} であることに注意し, LaSalle の不変原理 と呼ばれる結果(下記参照) を適用する.) 【参考) RT 内の集合 Mは, 任意の co E Mに対し, zoを通る (2) の解が常に M に留まるな らば (2) に対する不変集合と呼ばれる。 LaSalle の不変原理 V(z) (zE S) は (2) のリヤプノフ関数とする. このとき, S 内に留まる(2) の有界解は, t→ o とするとき E:={ueS:Vg)(z) =D 0} に含まれ る(2) の最大不変集合に近づく

未解決 回答数: 1