学年

質問の種類

数学 高校生

112.1 2枚目:記述はこれでも問題ないですか? 3枚目:l+1が3の倍数であることを示さなくても良い理由は こう(赤ペンで書いているところ)だからですか??

480 00000 基本 例題112 互いに素に関する証明問題 (1) (1) nは自然数とする。 n+3は6の倍数であり,n+1は8の倍数であるとき、 n+9 は 24の倍数であることを証明せよ。 (2) 任意の自然数nに対して, 連続する2つの自然数nとn+1は互いに素であ 重要 114」 ることを証明せよ。 指針 (1) 次のことを利用して証明する。 α, b, kは整数とするとき p.476 基本事項 ②. 基本 111 a,bは互いに素で, akbの倍数であるならば, kは6の倍数である。 (2) +1は互いに素⇔nとn+1の最大公約数は 1 nとn+1の最大公約数をgとすると n=ga, n+1=gb (a,bは互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは A,Bが自然数のとき, AB=1 ならば A=B=1 [CHART CAUCA a,bは ①1 ak=blならばんは6の倍数,はαの倍数 互いに素 ②2 aとbの最大公約数は 1 解答 (1) n+3=6k, n+1=81(k, lは自然数) と表される。 n+9=(n+3)+6=6k+6=6(k+1) n+9=(n+1)+8=8l+8=8(+1) よって 6(k+1)=8(+1) すなわち 3(k+1)=4(+1) ! 3と4は互いに素であるから, k+1は4の倍数である。 したがって, k+1=4m (mは自然数) と表される。 ゆえに n+9=6(k+1)=6.4m=24m したがって, n +9は24の倍数である。 (2) とすると n+1の最大公約数をg n=ga, n+1=gb (a,bは互いに素である自然数) と表される。 n=ga を n +1=gbに代入すると ga+1=gb すなわち g (b-α)=1小 g, a,b は自然数で, n <n+1 より 6-α>0であるから g=1 よって, nとn+1の最大公約数は1であるから, nとn+1 は互いに素である。 注意 (2) の内容に関連した内容を, 次ページの参考で扱っている。 練習 ②112 +12を35で割った余りを求めよ。 1+1は3の倍数 このとき, (2)を自然数とするとき 2n-1と2は である。 したがって, l+1=3m と表されるから、 n+9=8.3m=24m としてもよい。 (1) nは自然数とする。 n +5 は 7の倍数であり, n +7は5の倍数であるとき, ◄n=ga, n+1=gb 積が1となる自然数は1だ けである。 基 指針 C L a- と (2 a こ t 0 C

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0