学年

質問の種類

物理 高校生

(5)の問題についてです。 解説には-Ecos60°と書かれているのですが、なぜ-がつくのですか?

出題パターン 60 一様な電界 図のように,大きさE (N/C〕の一様な電界中に 3点A,B,Cを考える。 電界の向きはAからBA に向かう向きで,AB=BC=CA=1〔m〕 である。 このとき次のものを求めよ。 (1) B点に電気量 g 〔C〕の正の電荷を置いたとき に受ける電気力の大きさ(N)。 大量①8-8 (2) 電気量α 〔C〕の電荷をゆっくりとB点から (J)。 (3) B点に対する A 点の電位 VAB 〔V〕。 (4) B点に対する C点の電位 VcB (V)。 仕事の (5) A点に対する C点の電位VcV中国金 CACHOR NASUSREOXETINE 解答のポイント! (1) では電界の定義 (2)~(5) では電位の定義: No.2を用いる。 では負となり ... REGO きさで逆向きの外力 αE 〔N〕 を加える必要 がある (図 18-8)。 この外力を加えつつ1 [m] 動かすのに要する仕事は QEl 〔J〕 (3) 電位の定義: No.2より,B点から点ュアル まで +1Cをゆっくり運ぶのに要する仕事 が VAB なので, (2) よりg=1 とおいて, VAB = El[V] (4) 同様にB点からC点まで+1Cをゆっく万 り運ぶのに要する仕事が求める電位で, S V=-Ecos60°・L=-123EL〔V〕 外力のAC 成分 距離 解法 (1) 電界の定義より,電界E 中に+1Cを置くと電気カE〔N〕 を受ける。よっ て,+α〔C〕を置くとその倍のqE [N] を電界と同じ向きに受ける。 (2) ゆっくり運ぶには, (1) の電気力と同じ大 E (2)の移動 方向 外EC - (5) の移動 AqE 60% +1CRETE +α[C]電界E 0 +1C 外力+ 図18-8 60% (4)の移動 方向 Van = Ecos60°・L=/1/23EL[V] 外力のB→C 成分 距離 (5) A点からC点まで +1Cをゆっくり運ぶのに要する仕事が求める電位で B

回答募集中 回答数: 0
物理 高校生

物理の電磁気に関する問題です 出典:大阪大学(理系)2019 2枚目の写真にある問4について、解説では極板Dを移動しても電気量は変わらないため電荷の保存則を用いていますが、 ①「電気量が変わらないのはスイッチ1を切ったから」と言う解釈で良いのでしょうか? ②解説にある等... 続きを読む

22 2019年度 物理 〔2〕 以下のような,二種類の回路で起こる現象について考えよう。 お I.図1に示すように, 3枚の平行極板 A, B, D が置かれている。極板Aと極 板Bの位置は固定されており,極板Dは摩擦なく, 平行を保ったまま極板に NATURE 垂直な方向に動く。極板D は, スイッチ S を介して電圧 V の直流電源,ス イッチ S2 を介して自己インダクタンス L のコイルとつながっている。 3100 最初に極板 D は極板 A-Bの中間に置かれており,極板D-Aと極板D-Bの 間隔はともにdで極板間は真空になっている。このとき極板 D-A,極板 D-B からなるコンデンサーの静電容量は両方ともにCであった。スイッチ SL とスイッチ S2 はともに開いていて,どの極板にも電荷は蓄積していないもの とする。極板 D の変位をx(x <d), 最初の位置をx=0とし、極板Bか ら極板Aへの向きをxの正の向きとする。極板の面積Sは十分広く, 極板 きとする。他の面積は十万 16 の厚みはd に比べて十分薄いものとする。 極板の端の影響は無視できる。ま た導線及びコイルの抵抗は十分小さく, 無視できるとする。 61923 idid: *** Č6 +6 Aとせよ。 33817343 AJAN B D L X 4 #5820 ASHXU 05-0400 (3₂/Stot 図 1 FV (1) 02 (>) m ようこ出店 narosa # (3)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気の問題です。大至急解き方を教えていただけないでしょうか……。全く解き方がわかりません。どなたかどうかお願いします

問題5 (この問題では適宜対称性を援用せよ.なお, 1) 2) では Ia はIのままで計算すれば よい. 3) では Ia の表式の計算が必要となる) 極板が半径rの金属円板, 極板間距離がl の (十分理想的な) 平行板コンデンサがあるとする. いまこのコンデンサは充電中であるとする. 充電中には極板間の電場は時間変化するが, 空間的には一様 (極板間のどこでも同じ) であると仮定する.また, 2枚の極板が底面(上面・ 下面), 高さlの円柱を考えておこう. の → 1) 極板間では電流密度はすであるが,変位電流密度 J = o はすではない。極板間 で極板と同じ半径rの円板面をDとするとき をDにおいて面積分したものを,変位電 at 流La=pn as とする。 上記の仮定より Laは極板間で一様となる。変位電流 I』が上記 Jar Hola の円柱の側面に作る磁場の大きさBがB= となることを示せ. 2πr 2) 極板間の電位差を Vとする. 上記の円柱の側面におけるポインティングベクトルの大きさ Sを計算し, Sを側面にわたって積分したものを W とすると W = VI』 となることを示せ . πr² 3) 定数Cを C= com とおく。 時刻がt=0〜tのときに、電位差がV= 0〜V と変化した l とする.このとき, 2) の Wを積分すると - wa = 1/2 CV2 となることを示せ。 W dt

回答募集中 回答数: 0