学年

質問の種類

数学 高校生

例題253⑵で255のやり方をやるのはダメですか? 初見でどっちかがいきなり出てきたら、どっちがどっちの解法ってわかるんですか? 不定方程式です。

第8章 整数 例題 253 方程式の整数解 (1) 次の不定方程式の整数解を求めよ. (1) 2x-3y=21 考え方 (1) 2x-3y=21 を 2x = 3(y+7) と変形し、2と3は互いに素であることを利用する。 (2)xとyの係数に, 539=52×10+19 という関係がある. 解答 (1) 2x-3y=21 より, 2x=3(y+7) ・・・・・ ① ・① 2と3は互いに素であるから, xは3の倍数とな Focus (2) 52x+539y=19 る. したがって, kを整数として, x=3k とおける. これを①に代入すると, 2×3k=3(y+7) 2k=y+7 より, よって 求める整数解は, y=2k-7 よって, (2) 539=52×10+19 x=3k, y=2k-7 (kは整数) 2 (別解) 2x-3y=21 より, y=-x-7 yは整数より,xは3の倍数となる. したがって, x=3k (kは整数) とおけ。 y=2k-7 x=3k, y=2k-7 (kは整数) これを与えられた方程式に代入すると, 52x+ (52×10+19)y=19 整理すると 52(x+10y)=19(1-y) ...... ① 5219は互いに素であるから, x+10y は19の 倍数となり,kを整数として x+10y=19k, すなわち, x=19k-10y 52×19k=19(1-y) これを①に代入すると 52k=1-y より, y = -52k+1 よって, 求める整数解は, x=539k-10,y=-52k+1 (kは整数) xが3の倍数でないとき yは整数にならない。 xとyの係数の大きい方 の数 539 小さい方の乱 52 で割る. y=-52k+1 より、 x=19k-10y =19k-10(-52k+ =539k-10

解決済み 回答数: 1