学年

質問の種類

数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

経営戦略論の問題です。 授業の内容に頭が追いついていないため、解説付きで教えていただきたいです。

以下の文章の空欄に当てはまるもっとも適切な語句を課題フォームの選択肢の中からひとつ選び なさい. 第1問 プレイヤー A, B は価値 8 の分配方法をめぐって次のような提案返答型交渉を行う. ●まずAは自分の分け前をBに提案し、 次にBはAの提案を承諾するか拒否する. - もしBが承諾するならば、この交渉は合意に達し, 価値8はAの提案に従って分配 される. - もしBが拒否するならば,この交渉は決裂し, A は利得 2, B は利得3を得る. このゲームの部分ゲーム完全均衡において,この交渉は ① を得る. Aは2 Bは利得 3 第2問 以下の点を除いて, 第1問の交渉ゲームと同じである: ●もしBがAの提案を拒否するならば、 2回目の交渉が行われる. ●2回目の交渉では価値は8から7に減っている. まずBは自分の分け前をAに提案し,次 にAはBの提案を承諾するか拒否する. - もしAが承諾するならば、この交渉は合意に達し,価値7はBの提案に従って分配 される. もしAが拒否するならば、この交渉は決裂し, A は利得 2, B は利得3を得る. このゲームの部分ゲーム完全均衡において, AとBは次の利得を得る: ●もし2回目の交渉が行われるとしたら、この交渉は ④ Aは利得 5 B は利得 ⑥を得る. ●1回目の交渉は Aは利得 Bは利得 ⑨を得る. 1

回答募集中 回答数: 0
数学 高校生

ウの意味がわかりません なにを言ってるんですか?

382 重要 例題 31 同じものを含む円順列 00000 白玉4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法に 通り円形に並べる方法は通りある。更に、これらの玉にひもを通 し, 輪を作る方法は 通りある。 指針(円形に並べるときは,1つのものを固定の考え方が有効。 【近畿大 基本 18. ここでは、1個しかない赤玉を固定すると、 残りは同じものを含む順列の問題になる (ウ) 「輪を作る」 とあるから, 直ちに じゅず順列=円順列+2と計算してしまうと、こ 本事項 重複組合せ 異なる 解説 組合せ C 同じものを 重複を許し ようになる あるが、ここでは,同じものを含むからうまくいかない。 そこで,次の2パターンに分 の問題ではミスになる。 すべて異なるものなら「じゅず順列 円順列÷2」で解決す ける。 [A] 左右対称形の円順列は、裏返 すと自分自身になるから、 1個と 数える。 [B] 左右非対称形の円順列は、裏 返すと同じになるものが2通りず つあるから÷2 [A] [B] 裏返すと同じ (円順列全体) (対称形) よって (対称形) + 2 8! (ア) =280(通り) 4!3! 解答 同じものを含む順列 柿 の果物を 物があっ (考え方と の中から れぞれ 考える。 買物か りの左 りんご (イ)赤玉を固定して考えると, 白玉4個、黒玉3個の順列 1つのものを固定する の総数に等しいから 7! 4!3! -=35(通り) 47C4=7C3 (ウ)(イ)の35通りのうち, 裏返して自分自身と一致するも左右対称形の円環 のは、次の [1]~[3]の3通り。 [1] [2] [3] C 図のように、赤玉を一 上に固定して考えると よい。 また、左右対称形のとき 赤玉と向かい合う位置に あるものは黒玉であるこ ともポイント。 この の果 これ ■ 重 2 残りの32通りの円順列1つ1つに対して、裏返すと一 致するものが他に必ず1つずつあるから,輪を作る方法 35-3 は全部で 3+ 残りの32通りはお は、 対称形の円順列。 等 =3+16=19 (通り) (全体) ( か (対称形)+ で (非対称 = (対称形) + そ 2 練習 同じ大きさの赤玉が2個, 青玉が2個, 白玉が2個、黒玉が1個ある。これらの ④ 31 に糸を通して輪を作る。 (1) 輪は何通りあるか。 (2)赤玉が隣り合う輪は何通りあるか。 2

未解決 回答数: 1
数学 高校生

数Aです (3)の3の4乗通りの意味が納得できないので、教えてください

364 基本 21 組分けの問題 (1) ... 重複順列 47 6枚のカード1,2,3,4,5,6 がある。 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。ただし、各種 少なくとも1枚は入るものとする。 (2) 6枚のカードを2組に分ける方法は何通りあるか。 6枚のカードを区別できない3個の箱に分けるとき、 カード 1.2を 箱に入れる方法は何通りあるか。 ただし, 空の箱はないものとする。 指針 (1)6枚のカードおのおのの分け方は, A. Bの2通り。 - 重複順列で 通り ただし、どちらの組にも1枚は入れるから。 全部を AまたはBに入れる場合を除くために (2) (1) A,Bの区別をなくすために (3) A. B. C とし、問題の条件を表に示すと、 右のようになる。 よって、次のように計算する。 (34.56. B. Cに分ける) カー 3.4.5.6から少なくとも Cが空箱になる=3. 4. 5. 6をAとBのみに入れる) CHART 組分けの問題 個の組と組の区別の有無に注意 (1)6枚のカードを, A. B2つの組のどちらかに入れる方 解答 法は 264通り このうち, A. Bの一方だけに入れる方法は2通り よって、八組Bに分ける方法は 61-262(通り) (2)(1) A,Bの区別をなくして 62÷2=31(通り) -(A, B (3) カード 1,カード2が入る箱を、それぞれA,Bとし、 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード3. 4. 5. 6を入 れる方法は が通り が入 入る 意 このうち、Cには1枚も入れない方法はり したがって 3-2'=81-16=65 (通り) できるように C2224 A, B02 2570 0 21 (1)7人を2つの部屋A, Bに分けるとき。 どの部屋も1人以上になる分け方

未解決 回答数: 1