学年

質問の種類

数学 高校生

(2)で表の波線のところなんで△じゃなくて○なんですか

基本例題 44 連続して硬貨の表が出る確率 次の確率を求めよ。 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 (1) 2 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 [センター試験] Ip.298 基本事項1 CHARTI OLUTION 3つ以上の独立な試行 (1) は 4つ (2) は5つの独立な試行)の問題でも, 独立なら積を計算が適用できる。また,「続けて~回以上出る確率」の問題では, 各回の結果を記号 (○やx) で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」には余事象の確率 解答 各回について、表が出る場合を◯, 裏が出る場合をx,どちら が出てもよい場合を△で表す。 (1)表が2回以上続けて出るのは, 1回 2回 3回 右のような場合である。 O 4 よって 求める確率は (1)+(1/2) 1+1.(12)=1/1/24 ² ・1+1・ (2) 表が2箇以上続けて出るの は、右のような場合であり, 1回 2回 3 回 4 回 5回 その確率は (2).P+(1/2)・1+1.(1/2) 2.1 ∙1² ・1 19 5 +1)+(1/2)+(1/2)-1/2 よって 求める確率は 5 1-19_13 32 32 = 32 OX OSX × △ MA X₂ A ③ ム 4 × ₂ Q Q O O x × × ○2× X MA X AO O XX X < AO △ 4回 OO AAA ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 (2) 余事象の確率。 301 ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 4回目から続けて出る。 ○○×○○は1回目か ら続けて出る場合に含 まれる。 PRACTICE ... 44 ③ (1) 1枚のコインを8回投げるとき,表が5回以上続けて出る確率を求めよ。 (2) 1回の試行で事象 A の起こる確率をpとする。この試行を独立に10回行ったと きAが続けて3回以上起こる確率を求めよ。 2章 5 独立な試行・反復試行の確率

回答募集中 回答数: 0
数学 高校生

2枚目の付箋を貼った行がわかりません

次関数 (1)の解 S+AS+ 7 曲線 y=x2 (-2≦x≦1) 上の相異なる3点をA(a, a²), B (6,62), C(c, c2) とする。このとき, 次の問いに答えよ.ただし,<bc であるものとする. (1) △ABCの面積Sをa,b,c を用いて表せ. (東北大) (2)a,b,c を上述した条件の下で動かすとき, Sの最大値を求めよ. CARA <(1) の考え方> 点Bを通りy軸に平行な直線と直線ACとの交点をDとし, △ABC を △ABD と ABCD に分割して考える. 3点A, B, C は相異なる点で, その左右の位置関係も判 明している. 直線 AC の方程式は, y=(c+a)x-ac .....1 ここで,点Bを通りy軸に平行な直線と直線AC との 交点をDとすると, Dのx座標は6となる. また, ① に x=6 を代入すると, y=(c+a)b-ac =ab+bc-ac より, D のy座標は ab+bc-ac である. したがって線分BD の長さは、 BD=(ab+bc-ac) =(b-c)a-(b-c)b -2 (70365 =(a−b)(b-c) ◎おうとなる。 よって, △ABCの面積Sは, S=△ABD+△BCD BD B LD -)-(1+08) I-0- SA 4X4 YA =1/12(a-b)(b-c){(b-a)+(c-b)} =1/12(a-b)(b-c)(c-a) 0 1 6x=b² <=@ BD ADAN (Bのx座標 =/(a−b)(b-c)(b-a)+(a−b)(b-c)(c-b x 2点A(a, a2), C(c, c2) を通る直線 _c²-a²ª_(x−-a)+d² y= Ac y=(c + a)x-ac c-a _(c+a)(c/a) c-a (x-a)+ a² =(c+a)(x-a)+a² =(c+a)x-ac =(c+a)x-ac (Cのx座標)一 (c+a) (-a) žá²+² (Bの座標 必ず面積分割すること (②2)の <--2 関係 (2)の解 a. (i (ii であ a= NAJC よ + One (1)のよ 学ぶべ AB= すこS -2≤

回答募集中 回答数: 0
生物 高校生

生物の生殖の問題です。⑶からの解き方がわかりません。教えていただきたいです。お願いします。

DERE PA AVUT (d) の形質が発現した。 1. ZW 7. ZZ AVONO 個体には(c) の形質が発現し, (a)である個体には PO ウ. 優性 エ.不完全優性 . POUR RIDE (RJETS 201 1-4 2 106 ショウジョウバエの遺伝 次の文を読み, 下の問いに答えよ。 こく キイロショウジョウバエの体細胞には8本の染色体があり,そのうち2本は性染色体と よばれている。 残りの3対(6本) は雌雄共通の染色体で、それぞれ第2染色体, 第3染色 体, 第4染色体とよばれる。 キイロショウジョウバエの性染色体には伴性遺伝する白眼遺 伝子, 第2染色体にはこん跡ばね遺伝子と褐色眼遺伝子, 第3染色体には黒たん体色遺伝 子があり、どれも劣性形質である。 そして, これらの対立遺伝子は、眼色,はねの形態, 体色をそれぞれ野生型 (正常) にする遺伝子である。なお, キイロショウジョウバエの雄で は,遺伝子の組換えが起こらないことが知られている。 (1) キイロショウジョウバエの白眼遺伝子は, X, Y, Z, W のどの性染色体上にあるか。 (2) ヒトは、 キイロショウジョウバエと性の決定様式が同じである。 ヒトの伴性遺伝の例 を1つあげよ。 ( 03 滋賀医科大)

回答募集中 回答数: 0
数学 高校生

65の(2)なんですけど、なぜaベクトルの係数が0と分かるのでしょうか?緑の線で引いたとろです 教えてほしいです。

EX 65 正四面体OABC に対して, 3 点 0, A, B と同じ平面上の点Pが 3OP=2AP+PB を満たし (1) OP をa, で表せ。 いる。 OA=α,OB=6,OC=cとおくとき (2) △ABCの重心と点Pを結ぶ線分が面 OBCと交わる点をQとする。 OQ をd, b, c で せ。 [福井大 30P-2AP+PB から 3OP=2 (OP-ON) + OB-OP OP=ON+1/2OB=-a+1/26 よって (2) PQ:QG=s: (1-s) とすると OQ=(1-s) OP+sOG =(1-s)(+1/26) + s - (²-1)+(²-) 6 + 2 c 4 138-1=0 点Qは平面 OBC上にあるから 3 s=³ 4 ゆえに 0Q=³b+- 8 よって 1→ 4 点Dから平面ABCに下ろした垂線の 足をHとする。 Hは平面ABC 上にあるから DH=sDA + tDB+uDC, s+t+u=1 ・① =(s-u, -2s-3t-2u, -7s-6t-5u) DHは平面ABC に垂直であるから ゆえに DH AB=0 第2章 空間のベクトル G 4s+3t+2u=0 B 2, DH.AC=0 EX 座標空間に4点A(2, 1,0), B(1, 0, 1), C(0, 1,2), D (1,37) がある。 3点 A, B, C を通 66 る平面に関して点Dと対称な点をEとするとき, 点Eの座標を求めよ。 [京都大〕 ..…... ●D C と表される。 DA=(1, -2, -7), DB=(0, -3, -6), DC=(-1,-2,-5)であるから DH=s(1, -2, -7) +t(0, -3, -6)+u(-1,-2, -5) 1-s E Hh 平面ABC P DH⊥AB, DH⊥AC よって 6s+3t+2u=0 _C=(-2, 0, 2) であるから, ③ より u_u)x (-2)+(-2s-3t-2u)×0+(-7s-6t-5u)×2=0 って (5) [HINT] 平面 OBC 上 点は mi+nc で表され る。 ただし,m,nは実 数とする。 【3点G QPが一直 線上にあることから, PQ=sPG として考え てもよい。 その場合, OQ=OP+PQ =OP+SPG =(1-s) OP+sOG s+t+u=1」 の代わり に、 「AH=sAB+tA として考えてもよい。 の場合、DH=DA +7 ■B=(-1,-1, 1) であるから, ② より s_u)×(-1)+(-2s-3t-2u)×(-1)+(-7s-6t-5u)×1=0 としてDHの成分を を用いて表す。 口の係数が0。 HINT 点Dから平面 ABCに下ろした垂線の 足をHとすると, Hは線 分 DE の中点である。 よって DE=2DH DH の成分は, 「Hが平面ABC上にお る」, 「DH⊥平面ABC. から求めることができ Lint. 「DH =sDA+tDB+uDC

回答募集中 回答数: 0