学年

質問の種類

数学 高校生

(3)でx=2520l+1までは理解したのですが、 その後の解説から、ユーグリット互除法のように少しずつ変形が行われていて結局どうして答えに行き着くのかが分かりません。 文字も多くて混乱しています。 ご回答よろしくお願いします🙇🏻‍♀️՞

数学Ⅰ・数学A 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点 20) 17 (1)34と85の最大公約数は アイである。 次に,Nを3桁の自然数とする。 Nと85の最大公約数がアイ であるようなNのうち、最も小さい数は である。 N=ウエオ 102 17 60 数学Ⅰ・数学A (3)4,5,6 の最小公倍数は サシであり,2,3,4,5,6,7,8,9の最小公 2520 倍数はスセンタである。 次に,(2)の方程式 ①の整数解 (x, y) において, xが正で,2,3,4,5,6,7, 8,9のどれで割っても1余るものを考える。 xは 2520 x=スセソタ 1+1 (Zは0以上の整数) (2) 不定方程式 17 7x- アイy=1 について考える。 方程式 ① を満たす1桁の自然数x,yは 5 2 x= カ y= キ であり, 方程式 ①のすべての整数解は, 整数を用いて と表され 17 5 2520 クケk+ カ =スセソタ1+1 が成り立つから ・① 17 4 630 クケ k= チ シテト 1-1) と変形できる。 ここで 630 17 37 ツテト クケ × ナニ +1 (x, y) クケk+ コ [k+ キ と表される。 17 5 2 7 (数学Ⅰ・数学A 第4問は次ページに続く。) である。 よって、考えているxが2番目に小さくなるのは 18 l= ヌネ のときである。

解決済み 回答数: 2
数学 高校生

アとイは分かったのですが、ウとエが分からないので教えてほしいです。

A. a (@daM) 数 学 次のⅠ、Ⅱ、Ⅲ, Vの設問について問題文の にあてはまる適当なものを, 解答用紙の所定の欄に記入しなさい。 I 虚数単位をiとし, n を正の整数とする。 A, B を複素数でいずれも0でないも のとし,n次の整式P, (z)を 3 Pw(z) = Az"-B と定める。 ただし, 0でない複素数zを極形式でz = p (cos0+isin 0 ) と表すと きは,p>0 かつ偏角が 0≦6 < 2 の範囲となるように答えよ。 〔1〕 A, B をそれぞれ極形式で表したとき, x=41=2 AZ-B=0 A = r (cosa + i sin a) B = s (cos β +isin β) AZ-BZ=2/ とする。 ただし,r>0 かつs > 0 かつ 0≦a≦β <2" とする。 このとき,r,s,α βを用いて1次方程式 Pi (z)=0の解z を極形式で 表すと P2(2) W= √ A = 20 ア {cos イ ) +isin (イ)} 101515 となる。 ß-a ß-a n次方程式 P (z)=0のn個の解を wo, W1, ..., wm-1 とする。 ただし, k=0, 1, ...,n-1に対してwkの偏角を0kとしたとき <<< 01-1 <2πであるとする。 このとき,r,s, a, B, k,n を用いてw (k=0, 1, ...,n-1) を極形式で表すと エ +isin I ウ COS ■)} = Wk となる。 3次方程式 P3(z)=0の3つの解wo, W1, w2 が複素数平面上で表す3つ の点を頂点とする三角形の面積をSとする。A,Bがそれぞれla-il = 1/ -1- (Mab(3) 一人 入 x+x 1-4 K 0 2.-2

解決済み 回答数: 1