学年

質問の種類

数学 高校生

∠PHB=90°と書かれていますが、何故でしょうか? 地点A,B,Hは一直線上にあるのですか?下の画像の図を見ると、∠PHB=90+60=150°だと思いました ; また、△ABHにおいて余弦定理により下の式がx^2=1200/7になるのか分かりません。解き方教えてください💧

解答 水平な地面の地点Hに, 地面に垂直にポールが立っている。 2つの地点A,B か らポールの先端を見ると, 仰角はそれぞれ30° と 60° であった。 また, 地面上の であった。 このとき, ポールの高さを求めよ。 ただし, 目の高さは考えないもの 測量では A,B間の距離が20m, 地点Hから2地点A,Bを見込む角度は 60° とする。 基本 135 針 例題135の測量の問題と異なり、与えられた値を三角形の辺や角としてとらえると, 空間図形が現れる。よって, 空間図形の問題 平面図形を取り出す に従って考える。 ここでは、ポールの高さをxmとして, AH, BH をxで表し, △ABH に 余弦定理 を利用する。 なお,右の図のように,点Pから線分ABの両端に向かう2つの 半直線の作る角を点Pから線分 AB を見込む角という。 HOPEL ポールの先端をPとし, ポール の高さをPH=x(m) とする。 △PAH で PH: AH=1:3 ゆえに AH=√3x (m) △PBH で PH:BH=√3:1 よって BH= √√3 △ABH において, 余弦定理により 202=(√3x2+ したがって -x (m) x>0であるから x2= 1200 7 よって, 求めるポールの高さは - (√3 x)² - 2. √3x -- 1200 7 x= A 単位:m = 30 ° 20 √√3 20√21 7 120/21 7 √3x 60° m B -x cos 60° 1 √3 x H x A A 30% 2 P √3 √√3x 60° B 2 B [J]] P 1x 1 H P √√3* 内角が30°60°90°の直 角三角形の3辺の長さの比 は 12:3 1200 _20√3 √7 √7 高さは約13m H 4章 4 17 三角形の面積

回答募集中 回答数: 0
数学 高校生

なぜ正接を求めるのに1+tan^2B…を使うのですか?

258 00000 基本例 157 三角形の辺と角の大小 △ABCにおいて, sin A: sin B: sinC=√7: :1が成り立つとき (1) △ABCの内角のうち、最も大きい角の大きさを求めよ。 (2) △ABCの内角のうち、2番目に大きい角の正接を求めよ。 指針 解答 なぜ 使うの 練習 ② 157 (1) 正弦定理 (1) 正弦定理より、a: bic=sin A sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 三角形の辺と角の大小関係より、最大辺の対角が最大角 であるから 3辺の比に注目し, 余弦定理を利用。 a<b>A<B a=bA=B a>b⇒A>B B (三角形の2辺の大小関係は、その対角の大小関係に一致する。) (2) まず、2番目に大きい角のcos を求め, 関係式1+tan20= COS A= a b C sin A sin B sin C cos B= a:b:c=sinA: sin B: sin C これと与えられた等式から よって, ある正の数んを用いて a=√7k, b=√3k,c=k SI-81+³81 と表される。ゆえに, α が最大の辺であるから, A が最 大の角である。 +008-as a 余弦定理により (√3k)²+k²-(√7 k)² 2-√3 k.k よって, 最大の角の大きさは A=150° (2) (1) から2番目に大きい角はBである。 余弦定理により k2+(√7k)²2-(√3k)² 2.k. √7 k 等式1+tan² B= 1 cos2 B から 1= tan B= 3 V 25 により a:b:c=√7:13:1 = tan'B -(2√7)²-1 28 cos² B 5 25 A> 90° より B90° であるから tan B>0 したがって (*)014 3 5 -3k² 2√3k² 5k2 2√7k² |-- -1= 3 2 5p0 2√7 549 25 /p.248 基本事項 4 重要 159 30- 5 8 7 sin A sin B sin C が成り立つとき 1 cos²0 ® を利用。 6 a sin A sin B a/a: b=sinA: sinB b ・から sin B sin C b:c=sin B: sinC 合わせると (*) となる。 kを正の数として C から △ABCにおいて (1) AABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2) ABC の内角のうち,最も小さい角の正接を求めよ。 のとりうるの | ABCが魅角三冊 (1) 三角形の成立 b S=k とおくと a=√7k, b=√3k. c=k a>b>cからA>B>C よって A が最大の角で ある。 √3 k B √7 k 三角比の相互関係。 (p.238 例題 144 参照。) (1) の結果を利用。 △ABC は鈍角三角形。 C [類 愛知工大] 851 VD #=38 7=81 (0) 角三角形に 角となる場合を 例えば CA (3) ∠Bが となり、 等式が得られる。 軽よって (①) 三角形の成立条件 く (2) どの辺が最大辺に [] I<x<3のとき の対角が90°より ゆえに すなわち よって ゆえに <x<3との共通料 2xくらのとき X² (x₁

回答募集中 回答数: 0