学年

質問の種類

物理 高校生

この問題に関して質問です。 (ハ)の解説で2行目の式から3行目の式にどうすれば変換できまか? 教えて頂けると助かります

3 重力波はアインシュタインの一般相対性理論により約100年前に予言された, 空間の伸び縮 みが横波として伝わる現象である。 2016年に重力波の初めての直接検出が報告され,現在では世 界的に観測が行われている。 その基本的な原理はマイケルソン干渉計によるものである。 図のようなレーザー光源を用いた装置で, 光の干渉を利用して微小な距離変化を測定する。 装 置は、真空中にあるとする。 レーザー光源から出た光の進行方向をx軸の正方向に取る。 レーザー 光源は軸上の<0の位置にある。原点Oに軸に対して45°傾けて設置された厚さがじゅう ぶんに薄いビームスプリッターにより、レーザー光は半分透過し、残りが反射する。 透過した光 はそのままぁ軸上を進み, z=L+Xの位置にある鏡1で全反射する。 一方,原点で反射した 光は軸に垂直な方向に進行する。 この進行方向を軸の正方向に取る。 y軸上を進行した光は、 =L+Yにある鏡2で全反射する。 鏡1と鏡2で反射した光は再び原点0で半分に分けられ、 部がy軸上の負の位置にある点Dの光検出器に入射する。 これにより, AOBOD という経路の光 と, AOCOD という経路の光が干渉し、 検出器で観測される。 レーザー光の波長を入とする。 簡 単のため、 透過や反射による位相の変化はないものとする。 鏡の動きは光速と比較してじゅうぶ んに遅く、 入射する光と反射する光の波長は変化しないとする。 以下の問に答えよ。 (イ) 点Dで光が強め合う条件を,L,X,Y, 入および整数mより必要なものを用いて表せ。 (ロ) 鏡2をY = 0 の位置で固定したまま鏡1を X = 0 の位置から軸上を正の向きに距離 α だけ動かした。 鏡1を動かしている間に点Dで光の干渉を観測したところ、 弱め合いが N回 観測され、移動後は,ちょうど強め合っていた。 ① を L, N, 入より必要なものを用いて表せ。 重力波によって空間の伸び縮みが生じると, x,y 軸方向の光路が時間に依存して変化する。 そ こで鏡1と2が微小な単振動をするモデルを考え, X(t) = Acos (wt), Y (t)= Acos (wt+Φ) と表す。 ただし, A > 0, w ①,0≦2とする。 ここでは重力波のやってくる方向に よって決まる定数である。 (ハ) 光路差が時間によらず0となるとき, 重力波は検出できない。 このときの中の値を答えよ。 (-) 光路差の大きさをf(Φ) sinwt + t + 2/2) | の形に表すと、f(Φ) = K sin0 となる。 ただし, K はによらない正の定数である。 K と 0 を、 それぞれL, 入, A, Φより必要なものを用いて表せ。 (ホ) さまざまなの値に対するf(Φ) の最大値をL,入, A より必要なものを用いて表せ。 (へ) A = 1 x 10-21L, X = 1 × 10-6mのとき, 問 (ホ)の光路差の最大値をレーザー光の波長 入 の 4 x 10-10倍にするには, Lを何km にする必要があるか。 有効数字1桁で答えよ。 実際の重力波干渉計では、図のような装置にさらに鏡を追加してレーザー光を往復させ、 実効 的な光路長を長くする。そのため、実際の装置の大きさは,問(へ)のLの値より小さい。 201 w710-al 532 9 X 3275 6 IT レーザー光源 200 #31 37 エイ 37 L+Y [D 鏡 2 ビームスプリッター 鏡1 = Bª L+X 光検出器 Acasat sma -A sinut eard + Ato sulle Ksmo smot cov? + covul sm f v/ - In 4. JA 27-

解決済み 回答数: 1
物理 高校生

単振動の問題です 慣性力が働いているのに初めて衝突するまでの時間が何もない普通の平面の時と同じ時間になるのでしょうか?

(2) 図 1-2 に示すように、水平でなめらかな床の上を動く台車が台車 ある。 台車の床の上には質量 ma[kg]の小物体Aと質量 正の向き 小物体A 小物体B me [kg] (ma>me)の小物体Bが置かれている。 台車の床は 水平でなめらかである。 小物体Aはばね定数k [N/m〕 のばね の一端につながれ ばねの他端は台車の壁に固定されている。 小物体Bは小物体Aの右側に離れて置かれている。 ばねが自然 の長さで、台車と両小物体が静止していたときに力を台車に加 図 1-2 えて、台車を水平右向きに一定の加速度で運動させた。台車の加速度の大きさはα〔m/s'] であった。 小 物体Aが動き出した後で, 小物体Aの台車に対する相対速度がはじめてゼロになったときに小物体Aは小 物体Bに弾性衝突した。 この衝突は台車が等加速度運動を始めた時刻から [ 〔s] 経過したときに起 [[m〕 である。衝突直後の小物体Aの台車に対する 相対速度の大きさは (カ) [m/s)である。 衝突直後からは,衝突直後の台車の速度で台車が等速運動す るように台車に力を加え続けた。 小物体Aと小物体Bが再度衝突する前に、小物体Aの台車に対する相対 速度がゼロになった。このときのばねの伸縮量の大きさは (+) [m] である。 こり、衝突したときのばねの伸縮量の大きさは

回答募集中 回答数: 0
物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0