学年

質問の種類

数学 高校生

この問題を教えてください🙏 考察1から3までよろしくお願いします🙇‍♀️

y=-4, を利用した数列の和の求め方 20ページでは、 21 「差の形」 に kを求めるときに(k+1)-kという 着目した等式を利用した。また、26ページの例題8において、 (+1) 1/14 & k を求めるときにも, 「差の形」に着目した等式 利用した。 72 一般に, 数列の和 20g について k】 H ak = Ak÷1¬Ak となる数列{A} を求めることができれば 20k=Ah+1-A1 が成り立ち、その和を求めることができる。 視点 1 k(k+1) 72 22 + ·) a (2) (1)を利用して、kを求めてみよう。 1 k+Ⅰ これまで学んだ様々な数列の和についても、この方法で和を求めるこ とはできないだろうか。 92 13ページでは, 等差数列の和の公式の特別な場合としてkを求めた。 この和を「差の形」 を利用して求めることはできないだろうか。 A Az Ax-i-Az A₁ Žax = Anti 考察1 (1) 46=1/12 (k-1)kについて,等式k=Asto-A が成り立つこと を確認してみよう。 22ページの例21で求めた 2k(k+1) についても考えてみよう。 考察2 (1) k(k+1)=Bk+i-B を満たす数列{B}を求めてみよう。 (2)(1) を利用して (+1) を求めてみよう。 (1) (k + 2) も 考察 1 や考察2と同様の方法で求められないだろ うか。また、2k 2k(k+1)(k+2)(k+3) はどうだろうか。

回答募集中 回答数: 0
数学 高校生

n群が含む項数は2^n-1だから(2)2^k-1ではなく2^k-2ではないのですか?なぜこうなるのか教えてください。

384 基本例題 23 群数列の基本 1から順に自然数を並べて,下のように1個,2個 4個, うに群に分ける。 ただし,第n群が含む数の個数は2個である。 1/2, 3/4, 5, 6, 7/8, (1) 第5群の初めの数と終わりの数を求めよ。 (2) 第n群に含まれる数の総和を求めよ。 CHART & SOLUTION 群数列の基本 第群の最初の項や項数に注目 例題のように、群に分けられた数列を 群数 列という。 (1) 第4群の末頃までの項の総数をNと 区切りを入れる と分け方の規則 がみえてくる ...... k=1 解答 1+2+2+2=15 (1) 第4群の末項までの項の総数は 第5群の末頃までの項の総数は よって、 第5群の初めの数は 16, 終わりの数は31 1+2+2²+2³+2¹=31 (2) n≧2のとき,第 (n-1) 群の末頃までの項の総数は (-16) E 2²-1-2-1-1 n-1 2-1 =2n-1-1 ゆえに,第n群の初めの数は (2'-'-1)+1 すなわち 27-1 これは n=1のときにも成り立つ。 “ よって、第群に含まれる数の総和は,初項が2"-1, 公差 が 1 項数が27-1 の等差数列の和となるから 求める和は 1/1・2"-1(2・2"^'+(2"''-1)・1}=2"-2(3・2"--1) もとの数列 類 京都産大] となるよ 群数列 すると, 第5群の初めの数は, 自然数の列の第 (N+1) 項である。 また, 自然数の列の第 項の数はとなる。 (2) 連続する自然数の和であるから公差1の等差数列の和で,あとは初項と項数がわか ればよい。初項は (1) と同様にして求まる。 項数は問題文から,すぐにわかる。 区切りをとると もとの数列の規 則がみえてくる EAST C 重要 24 n-1 2-1 は,初項1,公比 A=1 2の等比数列の初項か ら第 (n-1)項までの和。 別解 第n群の終わりの数 は2-1であるから、私は 11/12.2°-12"-' + (2^-1 = 2²-²(3-2-¹-1) PRACTICE 23② 正の奇数の列を次のように,第n群が (2n-1) 個の奇数を含むように分ける。 1/3,5,79, 11. 13 15 1710 辞各 群 各 群

回答募集中 回答数: 0