学年

質問の種類

数学 高校生

1番が分かりません(2番は1番が分かれば大丈夫なので省きます) Qの中でPを満たさない領域もあると思うので、証明出来ていないと思うのですが… 逆ならQの方が大きくPを全て含むので分かるんですが、どうして違うのか分からないので解説して欲しいです

基本(例題 131 領域を利用した証明法 x, は実数とする。 (1)x2+y2+2x<3ならばx2+y2-2x<15であることを証明せよ。 (2)x2+y^≦5 が 2x+y≧kの十分条件となる定数kの値の範囲を求めよ。 解答 p.194 基本事項 2 (1)与えられた命題は,式の変形だけでは証明しにくい。このようなときは, 領域を利用した証明法が有効。 この命題の仮定と結論 gの不等式を満たす点(x, y) 全体の集合を、それぞれ P={(x, y)|x2+y'+2x<3}, Q={(x, y)|x2+y^-2x<15} とすると「pg が真である」⇔PCQ であるから,P,Qを図示することによ りらくに証明できる。 (2) 「bgが真である」「はαの十分条件」PCQ したがって、ここでは,{(x, y)|x2+y^≦5}{(x,y)|2x+yk} となるようなkの 値の範囲を、図をかいて求めればよい。 CHART xyの不等式の証明 領域の包含関係利用も有効 (1)x2+y2+2x<3⇔ (x+1)2+y^<22 x2+y²-2x<15⇔(x-1)'+y^<42 P={(x, y)|(x+1)²+y²<2²}, Q={(x, y)|(x-1)^+y2<42} とすると,図から,PCQが成り 立つ。 よって, x2+y2+2x<3ならば P 209 <Pは 円 (x+1)2+y2=22 -3 5 x の内部, Qは 円(x-1)+y2=42 の内部。 x2+y²-2x<15が成り立つ。 (2) P={(x,y)|x2+y2≦5}, Q={(x, y)|2x+yk} とすると x2+y^≦5⇒2x+y≧k が成り立つ ための条件は PCQ k < 0 かつ ゆえに よって,図から 12-0+0-k√5 √√22+12 |-k|≧(√5)2 よって k≤-5, 5≤k k<0 との共通範囲をとって k≤-5 12x+y=k ⇔y=-2x+k 傾きが-2, y切片 15 x 直線。 -√5 √5 (円の中心 (0,0)と -5 直線の距離) (円の半径 ) |-k|=|k|である から k5

解決済み 回答数: 1
英語 中学生

問題の2、4、5を教えて欲しいです。よろしくお願いします🙇‍♀️🙇‍♀️

5 Unit 4 長文問題 もしも時間を戻せたら? Target ①関係代名詞 ②仮定法 間接疑問文 1 Do you ever wish you () ( () able to change the past? If you did do all had (2) that ability, maybe you would spend more time practicing soccer, learn the instrument that you always wanted to play, study harder for that big test, or try to save more money for the future. 2 What would you do if you had the ability to turn back the clock? This was a question (あ) which Mr. Woodall, a high school teacher in Philadelphia, asked his students. Mr. Woodall wanted to know what was important to his students but was pleasantly surprised to see the results. I think their answers will be very interesting to you, too. 3 Mr. Woodall expected to see answers (1) which were connected to the own good of the students, but (3) he was wrong. The majority of the which he received from his students were for the good of answers (5) others. 4 A very common answer he found was," If I could turn back the clock, I would take back some things that I said to a friend." Apparently, many of the students regretted saying something (5) ( ) hurt their friends and wanted to change that. Surprisingly, close to 40% of the students answered this way. Another common answer was about pets. “(6) If I were able to turn back the clock, I would spend more time with my dog,” or “(7) I would be nicer to my cat,” were some common answers. Almost 25% of the students missed their pet very much and wanted to show more love. These pets included dogs, cats, birds, rabbits and other animals. 6 There were other answers about reading more books, studying harder, or eating less junk food. However, Mr. Woodall was quite impressed with his students and their concern for others. He decided to share all of the answers with his students, and the students enjoyed hearing the different answers. Mr. Woodall decided to try this activity with his students every year. By asking, he felt he would learn a lot about his students. turn back (時計を) 巻き戻す pleasantly 心地よく expected to 〜するだろうと思う good 利益 majority 大多数。 大部分 take back 取り消す apparently どうやら~らしい close to ~近く be nice to 〜にやさしい junk food ジャンクフード concern for 〜への気遣い。 配慮 )に適切な語を入れなさい。 問1 ), (5) ( (1) (were ) (5) ( that ) 問2 下線部(2) は具体的にどのような能力ですか。 日本語で答えなさい。 ( 問3 「下線部(あ)~(う)の which のうち, 他と用法の異なるものを1つ選び, 記号で答えなさ い。 ( う ) 問4 下線部(3) の内容を具体的に説明した次の文の( )に適切な日本語を入れなさい。 回答は( 大部分は ( に結びつくものと予想していたが, だった。 問5 下線部(4), (6) を日本語に訳しなさい。 (4) (6)

解決済み 回答数: 1
数学 高校生

数学B、数学的帰納法の問題についての質問です。 下の赤いボールペンで線を引いた下から2行目のn=2kの部分ですが、この時「kは自然数」や「kは整数」などの断り書きはしなくても良いのでしょうか? 普通の帰納法の問題では、n=kで命題の成立を仮定する時に、nが自然数なのでn=k... 続きを読む

EX (1,2, b1=1 および 033 1+1=2+3b, b+1=a+2b(n= 1, 2, 3. ......) で定められた数列{a}{b}がある。 Cab とするとき (1) C2 を求めよ。 (2) Cm は偶数であることを示せ。 (3)が偶数のとき, C7は28で割り切れることを示せ。 [北海道太] ←各漸化式に n=1 を代 b2=a1+2b1=2+2・1=4 (1) a2=2a1+3b」=2・2+3・1=7, よって C2=azbz=7.4=28 (2) [1] n=1のとき C=ab=21=2であるから, Cn は偶数である。 [2] n=kのとき, C が偶数であると仮定すると, Ck=2mm は整数)と表される。 n=k+1のときを考えると Ck+1=ak+1bk+1=(20+3bk) (+20k) =2a2+7akbk+65k2 =2ak+7.2m+60m² =2(ax²+7m+3bk²) +7m+3bk2は整数であるから, Ck+1 は偶数である。 よって, n=k+1のときも成り立つ。 [1] [2] から すべての自然数nに対してcmは偶数である。 (3) [1] n=2のとき C2=28であるから, C7は28で割り切れる。 [2] n=2kのとき, C2kが28で割り切れると仮定すると, C2k=28m (mは整数)と表される。 入する。 ←数学的帰納法で証明。 ←akbn=ch=2m ←漸化式から、すべての n に対して, an, bm は整 数である。 ←数学的帰納法で証明。 [n=2, 4, .... 2k, ... が対 象である。

解決済み 回答数: 1