学年

質問の種類

数学 高校生

例題68.2 (赤で書いているところは無視してください) 2枚目のように、自然対数をとった時yを|y|にしていたら 「x>0よりy>0」の記述はなくても大丈夫ですか?

基本 例題 68 対数微分法 次の関数を微分せよ。 (x+2)4 (1)y= y= 3/ x²(x²+1) (2)y=xxx>0) 00000 [(2) 岡山理科大] 基本 67 利用。 x) x) るから ex) とら |指針 (1)右辺を指数の形で表し,y=(x+2) xf (x+1)として微分することもできるが 計算が大変。 このような複雑な積・商・累乗の形の関数の微分では, まず, 両辺 (の絶 対値) の自然対数をとってから微分するとよい。 →積は和,商は差, 乗は倍となり, 微分の計算がらくになる。 (2)(x)=x-1 や (α*)' =α*10ga を思い出して, y'=xxxl=x* または y=x*10gxとするのは誤り! (1) と同様に,まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する (1) 両辺の絶対値の自然対数をとって log|y|=//{410g|x+2|-210g|x|-log(x+1)} 解答 両辺をxで微分して1=13142 2 2x y x x2+1 よって y'= 1/3 y (x+2) = 1.4x(x2+1)-2(x+2)(x+1)-2x2(x+2) (x+2)x(x+1) 1-2(4x-x+2) 3 3(x+2)x(x+1) Vx2(x2+1) 2(4x2-x+2) 3/ x+2 3x(x+1) Vx(x+1) (2)x>0であるから, y>0である。 両辺の自然対数をとって 両辺をxで微分して logy=xlogx y = 1.10gx+x.- = y y=(logx+1)y=logx+1)x* よって ||y|= x+2/ |x(x²+1) として両辺の自然対数をと (対数の真数は正)。 なお, 常に x 2 +1> 0 対数の性質 loga MN=loga M+logaN M loga N -=log.M-loga N logaM=kloga M (a>0, a+1, M>0, N>0) 両辺>0を確認。 <logy をxで微分すると x (logy)'=y'

未解決 回答数: 1
数学 高校生

(2)についてです。 赤線が引いてある、底の条件とは何のことでしょうか?

Check 例題 176 対数方程式 (2) 次の方程式を解け. (1) 2(104x2+log4x-6=0 考え方 対数 10gax=tとおいて, tについての方程式を解く. 解答 Focus (2) 底に文字xを含んでいるので、底の条件も忘れないようにする. 底はxではなく3にそろえる。 (1) 真数条件より, x>0 ...... ① 2(10g4x)+log4x-6=0 log4x=t とおくと, 2t2+t-6=0 (t+2)(2t-3)=0 より, t=-2, (2)) log39x-6logx9=3 Bogot であるから, t=-2のとき, 10g4x=-2 より, 16 NEOD t= =1/2のとき,log.x= =23より、x=432=2=8 これらは①を満たす. よって, 8 160 (2) 真数条件より, 9x>0 つまり、 かつ、底の条件より, x= 0<x<1,1<x ...... ① 両辺に10g3 x を掛けると log39x-6logx9=3 10g39 log39+log3x-6×- =3 log3 x 3 2 x=4-21 x>0 0<x<1,1<x< x= 210g3x+(10g3x)2-6×2=310g3x +)(pol-(S-2) gol 全国大会 10g3x=t とおいて整理すると t2-t-12=0 (t+3)(t-4)=0 より, t=-3,4 I>(x-1) or t=-3 のとき,logsx=-3より, t=4 のとき, 10g3x=4より, x=34=81 これらは①を満たす. よって, =27.81 x=3-3- = 1 27 D\x>0, x=1&D, xx まず、真数条件 違いに注意!! (log4x) 210gx2 tはすべての実数値を とる. tの2次方程式 tの値からxの値を求 める. 0% 08- *** logaM=pM=d² まず、真数条件と底の 条件 0<x<1,1<x loga MN =logaM+logaN 底の変換公式 log39=10g332=2 tは0以外のすべての 実数値をとる. tの2次方程式 tの値からxの値を求 める. loga M = p⇔M=d² まず 10gax=t とおいたの方程式からtの値を求める #30 Dr (おき換えたら範囲に注意)(ael. 第5

未解決 回答数: 1
数学 高校生

例題の(2)の①の範囲についてです。 何故1/27と8が0<X<1,1<Xの範囲を満たしているのですか?

Check 例題 176 対数方程式 (2) 次の方程式を解け. (1) 2(logax)+log4x-6=0 解答 考え方 対数 10gax=t とおいて, tについての方程式を解く. (2) 底に文字 x を含んでいるので, 底の条件も忘れないようにする. 底はxではなく3にそろえる. (1) 真数条件より, x>0 ...... ① 2 (logsx)^2+logsx-6=0 log x=t とおくと. 2t2+t-6=0 Focus (t+2)(2t-3)=0 より, t=-2, 32/1 t=-2のとき, 10g4x=-2 より, 3 t=23232 のとき,log.x=12/28 より x=42=238 これらは①を満たす. 1 16,8 よって, x= (2) 真数条件より, 9x>0 つまり x>0 かつ、底の条件より であるから, (2) log39x-6logx9=3 0<x<1,1<x ...... ① log39x-6logx9=3 log39+logsx-6× 両辺に10g3x を掛けると, 2 対数と対数関数 log39 log3x =3 2log3x+(logsx)²-6×2=3log3x 練習 次の方程式を解け. 17 *** x=42= (1) (log2x-log2x2-8=0 logsx=tとおいて整理すると, t²-t-12-0 (t+3)(t-4)=0 より, t=-3, 4 t=-3 のとき, logsx = -3より, x=3-3= t=4 のとき, log3x=4 より, x=3=81 これらは ①を満たす. 1 よって, x= 81 27' 16 1 27 まず, 真数条件 | 違いに注意!! (logsx)2 10g x 2 tはすべての実数値を とる. tの2次方程式 tの値からxの値を求 める. |loga M=M=a² *** まず, 真数条件と底の 条件 min x>0,x≠1より, 0<x<1,1<x loga MN まず 10gax=t とおいた t の方程式からtの値を求める (おき換えたら範囲に注意) =logaM+logaN 底の変換公式 logs9=10gs32=2 tは0以外のすべての 実数値をとる. |tの2次方程式 tの値からxの値を求 める. loga M=pM=a² (2) log3x-410gx3=3 p. 338 15) 327 第5章

回答募集中 回答数: 0
1/2