学年

質問の種類

数学 高校生

相加・相乗平均を使って範囲を調べるのはなんでですか?範囲を求める問題って沢山あると思うんですけど、どうしたら範囲を調べるっていう発想になりますか。

関数 y=4x+1-2x+2+2 (x≦2) の最大値と最小値を求めよ。 00000 / 関数y=6 (2x+2-x)-2(4*+4¯*) について, 2*+2=t とおくとき,yをt を用いて表せ。また,yの最大値を求めよ。 指針 (1)おき換えを利用。2*=t とおくと,yはtの2次式になるから 2次式は基本形α(tp)+αに直すで解決! なお、変数のおき換えは,そのとりうる値の範囲に要注意。 (2)まず,X2+Y2=(X+Y) -2XY を利用して, 4+4 を表す。 ・基本 173 で表すとの2次式になる。なお,t=2*+2* の範囲を調べるには, 20, 2-x>0 に対し, 積 2*2=1 (一定) であるから,(相加平均) ≧ (相乗平均)が利用で きる。 (1) 2^=t とおくと t>0x≦2 であるから 0<t≦2|pg⇔2°≦2° 解答 したがって <t≦4 y を tの式で表すと (1) ① ケ y=4(2")"-4•2"+2=4f-4t+2=4(t-12) 2+1 ①の範囲において, y は t=4で最大, t=1/2で最小とな gol y 50 最大 る。 t=4のとき 2=4 ゆえに x=2 のとき 2x= 1 10 2 10of ゆえに [豆] (1/2) 4 よってx=2のとき最大値50, x=-1のとき最小値1 (2)4*+4=(2x)+(2-x)=(2' +2'*)'-2・2・2x=-2 2F•2-1=2°=1 ゆえに y=6t-2(t2-2)=-2t2+6t+4 ...... 20, 2x 0 であるから,(相加平均) ≧ (相乗平均)よ 相加平均と相乗平均の関係 り(*)2+2222×2 すなわち t≧2…② a>0, 6>0のとき a+b √√ab 2 成り立つ。 ここで,等号は 2*=2x すな わちxxからx=0のときで -lo こ YA m17 最大 2 8 り立つ。) (等号はa=bのとき成 ①から y=-2(1-2/21)2+1/27 4 ② の範囲において,yはt=2 のとき最大値8 をとる。 x=0のとき最大値 8 32 3 2 t t=2となるのは, (*)で 等号が成り立つときであ る。 ( 5 5章 29 2 指数関数

未解決 回答数: 1
英語 高校生

間違っているところがあったら教えてください🙇‍♂️

1 Choose the best answer to fill in the blanks. (81) (1) Peter ( 1 teaches 3 will teach ) for ten years next month. 2 will be teaching will have taught /13 ( 東京電機大 ) (2) In my class, there are three students from abroad. One is from England and ( are from Australia. ①another (3) Our teacher is ( 2 others 3 the other the others ) to come by the time we promised to get together. 2 possible 3 probable A definite ) of the two men standing at the gate. I likely (4) My father is ( 1 more tall 2 taller (5) My parents objected ( ①to my climbing 3 the tall ) the mountain alone in winter. 2me of climbing 4 on me to climb the taller (京都産業大) (関西学院大) (近畿大) ト TИIO (千葉工業大) hearing (実践女子大 ). to consider (摂南 3 me to climbing (6) She had to shout to make herself ( I have heard 2 hear ③ heard (7) The project could be called a success, all things ( 2 considered 3 considering ) the sky, it will rain this afternoon. 1 consider (8)( ①Judging from 3 Though 2 Generally speaking ④It being (9) You must leave now; ( ), you will be late for your social studies class. ①instead 2 therefore 3 otherwise accordingly (10) We are now in the ( ) half of our training camp. 1 late 2 latter 3 later ④last ) wise and hardworking. 3 need ④needed (大阪学 (センタ (11) All teachers and students are not ( ①necessarily (12)( 2 necessary ) had the war begun when ①The moment ? No wonder terrorists hijacked a plane. 3 Hardly (13) Next week's seminar ought to provide ( 1 ours our ④As soon as ) with a lot of new information. ourselves 4 us

解決済み 回答数: 1
数学 高校生

この問題の解説の[1]で、f(0)>0となっています。 これが、f(0)≧0ではない理由を教えていただきたいです。なぜ、f(0)=0は入らないのでしょうか? 教えてください。よろしくお願いします。

展 106 放物線がx軸 放物線 y=x-8ax-8a+24 がx軸の正の部分と、異なる点で変わるように 定数αの値の範囲を定めよ。 CHART GUIDE | 放物線y=ax2+bx+c と x軸の共有点のx座標と定数んの大小に関する問 題では、グラフをかき [1] f(k) の符号 [2] D=62-4ac に注目する。 ただし, f(x) =ax2+bx+c である。 [3] 軸の位置 本間は,k=0 の場合(異なる2つの共有点のx座標がともにより大きい)で、 [1] f(0) > 0 [2] D > 0 [3] (軸の位置)>0 が条件。 解答 f(x)=x²-8ax-8a +24 とすると, 放物線 y=f(x)は下に凸で,軸は直線 x = 40 である。 方程式 f(x)=0 の判別式をDとすると, 放物線y=f(x)がx軸の正の部分と異な る2点で交わる条件は,次 [1] [2] [3] が同時に成り立つことである。 [1] f(0)>0 [2] D>0 [3] 軸が x>0 の範囲にある ■ [1] f(0)=-8a+24, f (0) > 0から8a+240 よってa<3 ...... ① (a-1)(2a+3)>0 3 a<-- 1<a [2] D=(-8a) 2-4.1.(-8a+24)=32(2a²+a-3) PIC =32(a-1)(2a+3) D> 0 から よって 2 ] [3] 4a>0 から a>0 ③ ] ① ② ③ の共通範囲を求めて 1<a<3 (ED) 3 0 1 2 注意 考え方の流れは下図の矢印のようになる。 YA [1] 軸| [3] 下に凸の放物線 y=f(x)がx軸の 正の部分と異な る2点で交わる グラフをかく 軸の 正の部 分で交 わる y軸より 右側に ある 条件を 読みとる [1] f(0) > 0 文章で表現 0 [2] D > 0 [2] 軸と x [[1] ~ [3] の [3] 軸 > 0 2点で 件から、グラ 交わるフがかける TRAINING 106 ④★ 定めよ。 201 DANA 2次方程式 x2(a-4)x+a-1=0 が次の条件を満たすように、 定数αの値の範囲を (1)異なる2つの負の解をもつ。

解決済み 回答数: 1
1/1000