学年

質問の種類

英語 高校生

仮定法の問題です。教えてください。よろしくお願いします🙇

REVIEW 下の日本語を参考に、( )に適当な1語を入れなさい。 0 if 1 ( ) you, I ( → If it had not rained yesterday, we ( ) accept the offer. )( 3 ( ) taken a walk in the park. > you come earlier, you could have seen her. A good jumper ( 6 i ( ) it ( 6 He suggested that she ( ③ My father talks ( ) leap across the ditch. } snowing today. } alone. ) if he ( ) ( everything. 8 If it ( } for music, life would be dull. ● 私があなたなら、その申し出を受け入れるだろう。 昨日雨が降っていなければ、公園で散歩すること ができたのに. 君がもっと早く来ていれば、 彼女に会えただろうに、 ● 跳躍の得意な人なら、 その溝を飛び越せるでしょう. 6 今日雪が降っていればいいのになあ. ● 彼は、彼女が一人で行くように提案した。 父はまるで何でも知っているかのように話す。 ● 音楽がなければ、 人生は退屈だろう. 〈仮定法過去 現在の事実と違うこと> 〈仮定法過去完了: 過去の事実と違うこと> <if の省略 = if you had come earlier....> < if-節の代わりとなる表現> <願望 : 「(今)~であればいいのに」> 〈 仮定法現在 > <仮定法を使った慣用表現: 「まるで~ であるかのように」> <仮定法を使った慣用表現: But for [Without]> (1

解決済み 回答数: 2
数学 高校生

この問題の(2)の解答の(i)のところのやり方が違ったので、合ってるかみてほしいです!また、私のやり方が合ってたとしても解答の解法が1番すっきりしてて良いと思うのですが、どうしたら私のでなく解答の解法が思いつきますか?

y= 9 が有理数となって矛盾することか らわかります。これを利用するには、与式を無理数を含む部分と含まない (x) 部分に分けます。 0xy平面の2直線のなす角をとらえるには, 傾きとtan の加法定理を利用します。 まず, tan の定義を思いだしておきましょう. 座標平面で 点A(1.0) が原点を中心に角だけ回転し点 P(x, y) になるとき (動径 OP の角が という Ay P ですから、否定的にしか表現で 麺の証明は -C (否定 「〜でない」ことが簡単に背定で表現できないことが . x+2y-2-(x+2)√3 0 ことが多く、青 xyは整数(有理数)では無理数だから 理法によるのが普通です. したがって,「無理数であることの証明は、 有理 数であると仮定して矛盾を導く」 方針をとります. 無理数についての問題を解くには次のことをよく用います。 「αが無理数 p q が有理数のとき p+ga=0⇒p=9=0」 これは90と仮定すると,α=P x+2y-2=x+2=0 ..(x,y)(22) (2)(i).mがいずれもy軸でないときを考える。このとき、この傾きを Pとし,Iが通る原点以外の格子点を(a, b) とすると,a0 で b P= (有理数) a である.同様にして,m の傾きをqとするとgは有理数である。 lm のなす角が60°であると仮定する。 このとき1.mx軸の正方向 からの回転角をそれぞれα,βとし、β-α=60°としてよい。 すると tano = p, tanβ=q であり, 8 tan (β-α)=tan 60° tan β tan or 1 + tan βtan r = √√√3 O 9-P 1+gp = √3 ① こと)。 tan6=2=(OPの傾き x だから傾きとは tan なのです. またこれからtan (0+π) tan もわかり ます。 1. は直交しない (60° をなす)のでpgキー1であり, ①の左辺は、 分子分 母ともに有理数だから有理数であり, が無理数であることに反する. (またはmy軸のとき、 1.m のなす角が60° であると仮定すると, tan 30°= により、他方の直線は y= この直線が通る xとなり, 原点を通る直線1, 2 があり、 傾きをそれ ぞれm1, m2 とします.x軸の正方向 からの回転角をそれぞれ 01, 02 とすると, 4 か らんへ回る角はB2-01 で 原点以外の格子点を (c.d) とするとd ¥0でV3 = となり,vが無 理数であることに反する. A 以上から題意が示された. (フォローアップ) tanf=tan (02-01)= tan ₂-tan 01 1 + tan O2 tan 01 = m2-m 1+m2m1 (ただしmm2 キ-1) 1. 一般に,xy 平面の2直線のなす角の公式は次のようになります 「xy 平面において交わる2直線y=mx+m,y=m2x+n2 のなす角を (001)とすると, 解答 (1) 直線が通る格子点を (x, y) とすると, x+1+√3 . y= yo-x+1+v 2 mm2-1 ならば mm2 キ-1ならばtan0= my-m2 1+m1m2 50 39-6 有理数 無理数, 2直線のなす角 6 座標平面上で,x座標, y 座標がともに整数である点を格子点と いう. 次の問いに答えよ. ただし, √が無理数であることを証明な しに用いてもよい. 1 (1) 直線 y=- x+1+√3が通る格子点をすべて求めよ. [山口大〕 以外にも格子点を通るとき, 1, m のなす角は, 60°にならないこと (2) 原点を通る2直線1, mについて考える. 1, m がそれぞれ原点 を証明せよ. PICCOLLAGE (イ)「有理数とは整数 p, q (0) と表される数」のことです(ここで 約分して約分数にしておくことも多い) これはいいですね。 具体 アプロチ

解決済み 回答数: 1
1/1000