学年

教科

質問の種類

数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

解決済み 回答数: 1
資格 大学生・専門学校生・社会人

この問題の資料に出てくる1.2の仕分けが苦手です。 どこの分野を勉強し直せばいいと思いますか? 教えていただけると幸いです🙇‍♀️

題 15-5 17-41 成される欄を ①から36 より示したうえでその金額を答え、さらにAからEに記載される用語と金額を答えなさい。 次の資料にもとづいて, 株主資本等変動計算書を作成した際に金額が記載さ 会計期間は20X8年4月1日から20X9年3月31日までの1年である。 同計算書の金額表示単位は千 円とし,減少となる金額については「△」を付すこと。 [資料] 1.20X8年6月24日に開催された定時株主総会において剰余金の配当と計数の変動を次のように 決定し,20X8年7月5日に配当の支払が完了している。 なお、当社の当期中における剰余金の 配当はこれのみである。 配当金 6,440千円 (原資:その他利益剰余金(繰越利益剰余金)) A 準備金 会社法が定める金額 別途積立金 2,200千円 2.20X8年9月10日,新社屋の完成引渡しに際し,新築積立金 18,300千円を取り崩した。 000,008.00 a 3.20X9年3月31日,決算において,その他有価証券の時価評価を行った。その際,法定実効 率25% により 税効果会計を適用している。 時価の推移は以下のとおりであった。 なお, 期中 おけるその他有価証券の売買はなかった。 前期末時価 38,120千円 当期末時価 31,940千円 処理を行う 4.20X9年3月31日,決算において,当期純損失が4,989千円と確定した。 画 15,500 2.200 ( 2.700 300円 Ⅱ 000. 1年分を支払 ( 養 料 園

解決済み 回答数: 1
1/94