学年

教科

質問の種類

数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
公務員試験 大学生・専門学校生・社会人

この問題の解説にある、 AはBの出発15分前に出発し、BはCの出発7分後に出発したことから、AはCの出発8分前に出発したことがわかる。 この文章なんですけど、どういう風に考えたらAはCの出発8分前に出発したことが分かるんですか? どれだけ解説を読んでも、頭がこんがら... 続きを読む

SECTI 第1章 ●ECTION 数的推理 11 0 速さ 実践問題 74 基本レベル 頻出度 地上★★★ 国家一般職★ 国税・財務・労基★ 国家総合職 ★★ 東京都 ★ 特別区★★★ 国家総合職(教養区分)★ 裁判所職員★★ 問 A, B, Cの3人が同じ場所から同じ道を通って同じ目的地へ徒歩で向かった。 Aは, Bの出発15分前に出発し, Cの到着4分後に到着した。Bは、Cの出発 7分後に出発し, Aの到着11分後に到着した。 A, B, Cはそれぞれ一定の速 さで移動し,Bは分速60m,Cは分速70mだったとすると、Aの速さは か。 1: 分速48m 2:分速50m 3: 分速52m 4: 分速54m 5: 分速56m (国家一般職2024) とこは初めてずれった。 それぞれ1回返した後、甲と乙が再び 通ってから63秒であった。 いのはどれか。 図(地上2010) 実践 ◆問題74 の解説 PUT チェック 1回目 2回目3回目 <速さ > AはBの出発15分前に出発し, BはCの出発 7分後に出発したことから,AはC の出発 8分前に出発したことがわかる。また, BはAの到着11分後に到着したこと およびAはCの到着4分後に到着したことから,Aが移動に要した時間をα (分) と すると、中 Bの所要時間: α-15+11=α - 4 ( 分) Cの所要時間: α- 8-4 α-12 (分) 30 第1章 数的推理 ここで,同じ距離を移動する場合, 所要時間の比は速さの逆比に一致することか ら,BとCの所要時間と速さに着目して,次の式を得る。 (a-4): (a-12) = 7:6 としく、さらにこのα=60(分) 次に,Aの速さをx (m/分) として, AとBの所要時間と速さに着目すると、 a: (a-4)=60: x 60:56=60x CHROMA PASOS を満たす。 x=56(m/分) となり,Aの速さは分速56mであることがわかる。 よって, 正解は肢5である。 となりを代入 ()+()=x+x 40x-400 (e/m)= たすため、 よって、正解は 10(分)と 2である。 (コメント) 本間でわれているの 8:1 01:S

未解決 回答数: 2
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
1/21