学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

問題全部分かりません。解いていただきたいです。途中過程も記述していただきたいです

3 確率XとYを以下のように定義する。 1 W. P. 1/6 2 W. P. 16 -1 w. P. 1/5 = 3 W. P . 1/6 Y = 0 w.P. 112 4 5 w.P. 1/6 W. W. P 3/10 P 1/6 W P 1/6 (1)XとYの確率関数をそれぞれfx(水).fy(リ)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(21) Fy(y)とする。このとき、FX(0) FX (5) FY (0) FY (1) FY (2) の 値をそれぞれ求めなさい。 (3)Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5) Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1=2X+3の平均を求めなさい。 (8) Z1の分散を求めなさい。 (9) Z2 (10) Z2の分散を求めなさい。 4 (1)f(水) = -3Y+2の平均を求めなさい。 C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(t)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 X~N(50.102)であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第一四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対し7.2=2X-3Yと定義する. このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、この分散を求めなさい。 °

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。

H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20

回答募集中 回答数: 0
資格 大学生・専門学校生・社会人

これの18,000の所あるじゃないですかこれは どうやって18,000と出たのでしょうか?非支配株主持分です。 どの数字を足せばいいのか教えて頂きたいですよろしくお願いします🙇‍♀️

(解答) 連結精算表 個別財務諸表 P 社 S 修正 ・消去 科 社 借 (単位:千円) 方 貸 現売商一貸 未 貸借対照表 金 方 連結財務諸表 第2問対策 預 ## 1+ 収 S社株式 金金品金益地式ん 22,650 22,060 54,000 28,000 8,000 44.710 40,000 16,640 74,000 800 14,000 10,000 55,840 150 4,000 100 16,000 3,000 50 1,000 23,200 18,000 23,200 ん] 4,000 400 れ t 3,600 資産合計 170,000 69,700 4,000 43,500 200,200 未払費 資 本 金金用金金金 掛入 買 22,800 13,600 8,000 28,400 金 8,000 10,000 10,000 8,000 100 100 金 112,000 24,000 24,000 112,000 資本剰余金 8,000 6,400 6,400 8,000 利益剰余金 19,200 15,600 1,600 400 25,800 61,300 53,500 非支配株主持分 160 12,800 18,000 400 5,760 負債・純資産合計 170,000 69,700 111,960 72,460 200,200 損益計算書 売 292,800 上 高 193,100 152,500 52,800 売上原 価 144,000 121,200 800 52,800 213,200 販売費及び一般管理費 「のれん」償却 受取利息 49,600 32,000 17,600 400 400 200 支払利 受取配当金 500 300 160 400 240 土地売却益 当期純利益 幸支配株主に帰属する当期純利益 会社株主に帰属する当期純利益 18.000 息 300 300 1,000 1,000 29,960 18,000 14,400 55,540 53,100 5,360 5,760 400 24,600 53500

未解決 回答数: 2
化学 大学生・専門学校生・社会人

至急 有効数字について この問題だと有効数字の幅が8.35〜8.45で、実際の誤差幅は8.27〜8.51です。 有効数字は数値がどこまで信頼出来るかを示した物だと思うのですが、仮に体積が8.51だったら、有効数字で示した値の中に答えが含まれていないことになります。 これは... 続きを読む

問題1-10 電卓を用いて以下を計算せよ. (1) 2÷7 (2) 直方体の体積を求めるために, Aさんが縦の長さ, Bさんが 横 Cさんが高さを測定した. 彼らはそれぞれ10cm, 1cm, 0.1mm刻みの精度の異なったものさし定規を用いて測定してし www 10cm まい, これらの値として4.2m,234cm, 85.35cm を得た. 直方 体の体積はいくつと表示するのがベストだろうか, 数値はどこま で信用できるだろうか. 0.1mm 1 cm (2)単位を合わせると 4.2m, 2.34m, 0.8535m となるので, 4.2m×2.34m×0.8535m= 8.388198m² なる値が求まる. しかし, 4.2mという測定値は4.15 4.2 4.25を四捨五 入して得た値なので4.2m±0.05m を意味する。 つまり、この値は±0.05m (± 0.05/4.2 ×100=±1.2%) の誤差をもつ。 同様に2.34mは2.34±0.005 (誤差± 0.005/2.34×100= ± 0.21%), 0.8535m は 0.8535 ± 0.00005 (誤差± 0.00005/0.8535 × 100=0.006%) を意味す る. したがって、この値を用いて計算した8.388198m² なる体積は± 1.2% ± 0.21% ± 0.006% =±1.4% の誤差をもつ つまり (8.388198 ± 0.117435) m である. それゆえ,この直 方体の体積は8.388 0.117=8.39 ±0.12(8.27~8.51)=8.4m² と表せば十分である. 8.4 の意味は 8.35~8.45 であり、 実際の誤差幅よりも小さい. 8.4 という答ですら多 めの有効数字を示したことになる.つまり,計算結果は4.2, 2.34, 0.8535の三つの測 定値の有効数字の桁数 2, 3, 4桁のうちのもっとも小さい桁数2桁に合わせて示せばよ いことがわかる (1桁下の3桁目を四捨五入して示すのが常識) 実験データ処理におけ る有効数字の扱いは, 以上のように測定値の精度に依存する すなわち, 有効数字は測定値の精度を反映したものである. 1000's GD 01 (0 0800.0 -0.21% 12% 12% x6/180.18=0.3999(0.4000)

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

(3)(4)がわかりません

で一定に保ったまま kPaった。 合気体に気火花をさせたのち、容器のを 27°すると. とき 生成した水の % がしてい 容器はCkPa となった る。(H100.R=8.31×10 1.01×1051760mm K・mol). A:(70.4.0 30 (エ) 97.3730 (ア) 35 36 (エ) 70 (オ) (ア) 18 24 (エ) 30 95 324 物質の二 60. 連結球 気体の燃焼〉 に最も適 るものを,それぞれ下から選べ。 片側を閉したいガラス管の内部を水で満たし銀だめの中で倒立させた。 この水銀柱の異空部水蒸気で飽和させると、1気において, 水銀柱の高さ は 730mm であった。 270における水の飽和圧は (AkPaである。 27℃で、水素が圧力30 Paで詰められた耐性容 各積2,酸素が圧力 で詰められた耐圧容 3.0L) カコックスで連結されている。温度を 容積 を開けての気体をすると、気体の全圧 33 べてなくなった)ところでピストンを止めた (状態II)。その後,さらにピストンへの圧 力を下げた状態Ⅲ)。 飽和水蒸気圧は図2に示すように変化し, 60℃においては 0.20 × 10 Paである。 容器内の液体の体積は無視できるものとして,(1)~(4)に答えよ。 ただし、水素は水に溶解しないものとする。 (1),(3)の答えは有効数字2桁で記せ。 (R=8.3×10 Pa・L/(K・mol)) ピストン 飽和水蒸気圧 [×10Pa] 1.00- 0.90- 0.80- 0.70- 0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00- 0 10 20 30 40 50 60 70 80 90100 温度 [℃] 図2 気体、 液体 状態 I 状態ⅡI 状態Ⅲ 図1 DO 25 350 (オ)6775 ( 100 [17田大 改] 結球と体の圧力> 気体は を扱い 17°C 7°C 連結部分およ 1.0,C=1, N-140=16) AR=8.31×10° Pa・L/(m・K), 飽和水蒸気圧 とする。 また、 (1) 状態 I における容器内の体積を求めよ。 思考 (2) 状態 Iにおける容器内の体積を固定したまま、温度を上げた。 容器内の水がすべて 水蒸気に変化する温度 (液体の水がすべてなくなる温度)は,次の(a)~(e) のどの温度範 囲に含まれるか。 最も適当なものを一つ選べ。 (a) 60~70°C (b) 70-80°C (c) 80-90°C (3) 状態Ⅱにおける容器内の体積を求めよ。 (d)90~100℃ (e) 100℃以上 (4) 状態Ⅰから状態Ⅲへの変化によって, 容器内の圧力Pと体積Vの関係はどのよう に変化するか。 最も適当な図を次の (a)~(e)から一つ選べ。 天体の水の ものとす (a) V に示して で各にメタン32 いて、コックをしたれ には空気 コック A 容器 B (b) + II (c) (d) (e) Ⅱ 20% 11.52 れた。 30.0(L) に保ったを開き、 時間が経 容器内の人 燃焼 A, 器 P →P [19 防衛医大 〕 にした。この容器内の [Pa〕 を求めよ。 生成した 存在 のとする。 さらに を開いたまま 063 〈理想気体と実在気体〉 「このとき,①容 内を 在する液体の水の物質量 [mol] を求めよ。 に存在する水蒸気 [mo 量 容器B内を17 よび ②容器内に存 保っ 以下の文中の空欄 に入る当を語を記せ。 62. 〈混合気体の体積〉 [14 京都府医大 改〕 実在気体の理想体からのを指して れる。ここではhp (Parは体積 P の値がよく用 PT) はK)であ 物質量(mol 図1に示すような体積と温度を自由に変えることのできるピストン付き容器に 0.15molの水素と0.20molの水を入れ, 温度を60℃に保ち、ピストンに0.50×105 Pa の圧力をかけた。このとき,水は一部液体であった(状態Ⅰ)。 温度を一定に保ったまま, ピストンへの圧力をゆっくり下げ, 容器内の水がすべて水蒸気になった (液体の水がす とかが一定の条件 Z値の力依存 多くの実在気体では、Pを 俺から大きく と、乙はからんするさらにPを大き やがて するの値が いる 大きくしたときと するの エ ウ が現れるた が強 れるためで 名古

回答募集中 回答数: 0
1/47