学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の解説お願いします。計算過程もお願いします❗️

第2問 (必答問題)(配点 30) [1] 先生と花子さんは, 半径が等しい二つの円C:x+y2 = 4, C2x2+y2-8x+12=0 について話している。 二人の会話を読んで,下の問い に答えよ。 先生: C2 の中心の座標を求めてください。 花子:中心の座標は ア |です。 先生: 円 C, 上の点 (x1, y) における接線の方程式を求めてください。 です。 花子: 接線の方程式は (1) 先生は,さらに問題を花子さんに出題した。 ものを、次の①~③のうちから一つ選べ。 ⑩ x1x+yiy=2 ① x+y=2 ② x1x+yiy=4 3 x+y=4 x1 y1 X1 y1 花子: 接点の座標は カ です。 先生: よくできました。 イ 問題 円 C2の接線で, 円 C を面積の等しい二つの部分に分けるものが2本あ る。この2本の接線について,円 C2 との接点の座標を求めよ。 (3) カ に当てはまるものを,次の ⑩~⑤のうちから一つ選べ。 0 (4-√3, ±√3) ① (4-√3, ±2√3) (2) (3, ±√3) 4 (4+√3, +√3) (3) (3, ±2√3) と求まりました。 先生: よくできました。 また、 ク 0 先生これで(i) は解決しましたね。 次に (ii) を考えましょう。 太郎:y= キ としていいですから, 2次方程式 Q(x)=0 の解をα, βと して、 解と係数の関係を用いて, +β2 をk で表すことができます。 花子ということは, f(k)=²+B2+y²" とおいて, y=f(k) のグラフを考えれ ばいいですね。 先生: そうです。 太郎: ²+B2+y”のとり得る値の範囲は キ 0 テ ケ ク の解答群 に当てはまる ツ から一つずつ選べ。 ただし、 テ ① > イ ト の解答群 ① m テ a² +B² + y² ト ツ テ ウ に当 N ナニ ナニ ヌ ト に当てはまるものを、次の各解答群のうち (4+√3, ±2√3) ヌ に当てはまる数を求めよ。 まる については同じものを選んでも 4 S | 先生:では, 円 C2 上の点Q(p, 9) における円 C2 の接線の方程式は,どのよ うに考えて求めますか。 花子: 円 C2 の中心が原点に移るように円 C2 を平行移動した円が, 円 C です。 この平行移動で点Qが点Q’ に移るとすると, 円 C1 上の点Q における 円 C の接線の方程式は I となります。 このことから, 接線の方 (2) 選べ。 程式は I オ オ と求まります。 に当てはまるものを、次の各解答群のうちから一つずつ I の解答群 ⑩ (p+4)x+gy=2 ① (p-4)x+gy=2 ② (p+4)x+qy=4 ③ (p-4)x+qy=4 オ の解答群 ⑩ (p+4)(x+4)+gy = 2 ② (p-4)(x+4)+gy = 2 ④ (p+4)(x+4)+gy=4 ⑥ (p-4)(x+4)+gy=4 〔2〕 先生と太郎さんと花子さんは, 3次方程式に関する次の問題について話して いる。 三人の会話を読んで、 次のページの問いに答えよ。 問題k を実数とする。 P(x)= x³ (2k+1)x²+(3k²+7k-7)x-3k²-5k+7 とする。 (i) 3次方程式 P(x) = 0 が異なる三つの実数解をもつようなkの値の範 囲を求めよ。 (ii) k(i)で求めた値の範囲にあるときを考える。 3次方程式 P(x)=0 の 解をα, B, y とするとき ++のとり得る値の範囲を求めよ。 先生 まず, (i)から考えてください。 3次方程式 P(x)=0 が異なる二つの実数 解をもつようなんの値の範囲を求めましょう。 太郎: P キ 1=0 ですから, P(x) は x- キ で割り切れます。 P(x) キ で割ったときの商をQ(x) とし, 2次方程式 Q(x)=0 の 判別式をDとすると, 方程式 Q(x)=0 が異なる二つの実数解をもてば よいので, D ク 0 より ケ ① (p+4)(x-4)+gy = 2 ③ (p-4)(x-4)+qy=2 ⑤ (p+4)(x-4)+gy=4 ⑦ (p-4)(x-4)+gy = 4 コ セ が(i)の答えです。 | 先生 (i) の答えは (*) ではないよ。もう少し考えてください。 太郎 そうか。三つの解が異なるから, (*) の条件に Q という条件が必要でした。 花子:確かにそうですね。 じゃあ、 3次方程式 P(x)=0 が異なる三つの実数解 をもつようなkの値の範囲は ソ k. サ くんく- が正しい答えとなります。 または k. ス チ

回答募集中 回答数: 0
1/2