学年

教科

質問の種類

数学 大学生・専門学校生・社会人

波線部分が理解できません😿なぜそのように言い換えられるかが不明ですよろしくお願いします🙇

EN論法で, 数列の極限を攻略しよう! 数列と関数の極限 818 一般項an が与えられたとき,その極限liman の問題は高校でも既に勉 強しているね。でも,数列{an}が極限値 αをとることを示す厳密な証明 法として,大学の数学では,e-N論法をマスターする必要があるんだよ。 イプシロン・エヌろんぼう”と読む。 まず,この “e-N論法” を下に示す。 E-N論法 正の数をどんなに小さくしても,ある自然数 N が存在して, nがn≧Nならば,|an-a|< となるとき, liman=α となる。 n→∞ これだけでは,なんのことかわからないって? 当然だね。 ここは,大学 の数学を勉強する上で, みんなが最初にひっかかる第1の関門だから丁寧 に話すよ。 この意味は,正の実数を小さな値, たとえば, c = 0.001にとったとし ても,ある自然数Nが存在して, 数列 41, 2,., an-1, ax, ax+1, … のうち n≧Nのもの, すなわち ax, ax+1, に対して, α との差αが、 (N,N+1,... ε=0.001より小さく押さえられる, と言っているんだね。 ここで,正の実数は連続性と稠密 (ちゅうみつ)性をもつので,こ を限りなく0に近づけていくことができる。 それでもあるNが存在し n≧N をみたす an について, lan -α < が成り立つといっているわけ ら, n→∞のとき, α はαに限りなく近づいてlim=α と言える だね。 納得いった? 818

解決済み 回答数: 1
資格 大学生・専門学校生・社会人

この問題の資料に出てくる1.2の仕分けが苦手です。 どこの分野を勉強し直せばいいと思いますか? 教えていただけると幸いです🙇‍♀️

題 15-5 17-41 成される欄を ①から36 より示したうえでその金額を答え、さらにAからEに記載される用語と金額を答えなさい。 次の資料にもとづいて, 株主資本等変動計算書を作成した際に金額が記載さ 会計期間は20X8年4月1日から20X9年3月31日までの1年である。 同計算書の金額表示単位は千 円とし,減少となる金額については「△」を付すこと。 [資料] 1.20X8年6月24日に開催された定時株主総会において剰余金の配当と計数の変動を次のように 決定し,20X8年7月5日に配当の支払が完了している。 なお、当社の当期中における剰余金の 配当はこれのみである。 配当金 6,440千円 (原資:その他利益剰余金(繰越利益剰余金)) A 準備金 会社法が定める金額 別途積立金 2,200千円 2.20X8年9月10日,新社屋の完成引渡しに際し,新築積立金 18,300千円を取り崩した。 000,008.00 a 3.20X9年3月31日,決算において,その他有価証券の時価評価を行った。その際,法定実効 率25% により 税効果会計を適用している。 時価の推移は以下のとおりであった。 なお, 期中 おけるその他有価証券の売買はなかった。 前期末時価 38,120千円 当期末時価 31,940千円 処理を行う 4.20X9年3月31日,決算において,当期純損失が4,989千円と確定した。 画 15,500 2.200 ( 2.700 300円 Ⅱ 000. 1年分を支払 ( 養 料 園

解決済み 回答数: 1
1/128