学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

数的処理の資料解釈の問題です。 写真1枚目が問題、2枚目が解答の、選択肢4についての部分です。 この選択肢4の解答の初めに、「市場総額の対前年増加率がいずれの年も正であるから、その他の額の構成費が前年よりも増加している年をみる」と書いてあるのですが、なぜそうなるのか分かりません。

【No. 24】 図1はある国の、バイオテクノロジー市場総額の対前年増加率の推移、図IIはバイオテクノロ ジー市場総額の構成比の推移を示したものである。 これらの図からいえることとして、 確実なのは次のう ちどれか。 (%) 15 13.0 10 10 対前年増加率 0 04 (%) 100 4.6 2005 8.0 7.3 2006 2007 2008 (年) 図 I 88 80 28. 42 € 24.8 25.3 その他 43. 32 60 40 構成比 _6.9 13.9 60 17.0 農林水産品 4.1 : 24.6 22.5 20.9 40 化成品 30.9 20 20 40.1 38.8 36.8 医薬品 21.7 0 2005 2006 2007 2008 (年) 図Ⅱ 1. 農林水産品についてみると、 2005年の額の指数を100としたとき、2008年の額の指数は500を上回っ ている。 2.2005年から2008年までの化成品の額についてみると、最も小さいのは2008年であり、次に小さいの は2005年である。 3.2007年と2008年の医薬品の額についてみると、 どちらの年も前年の額を下回っている。 4.2006年から2008年までのその他の額の対前年増加率についてみると、いずれの年もバイオテクノロジ 一市場総額の対前年増加率を下回っている。 5.2007年に対する 2008年の増加額について品目別にみると、大きい順に農林水産品、その他、 化成品、 医薬品である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

写真2枚目の下の方 波線部分について なぜおもりの比が1:3になるのですか?? なぜか畑中は天秤の式を勧めていますが、もしかして水溶液の問題は方程式の方が効率いいですか??

X Exercise No.39 容器Aには3%の食塩水1000g が、 容器Bには9%の食塩水3000gが入っ ている。いま、それぞれの容器から食塩水をくみ出して交換したところ、A, Bの濃度は等しくなった。A,Bからくみ出した食塩水の比は1:2であった とすると、等しくなったときの濃度と、Aからくみ出した食塩水の量は、それ ぞれいくらか。 市役所 1999 濃度 食塩水の量 6% 450g 6% 600g 3.7.5% 450g 4.7.5% 550g 5.7.5% 600g 1. 2. X No.40 ある塩の水溶液A,Bは、濃度が互いに異なり、 それぞれが 1,200gずつ ある。 両方を別々の瓶に入れて保管していたところ、水溶液Aが入った瓶の蓋 が緩んでいたため、水溶液Aの水分の一部が蒸発した結果、 100gの塩が沈殿 した。 この沈殿物を取り除くと、 水溶液の重量は800g となったが、これに水溶液 Bのうちの400gを加えたところ、この水溶液の濃度は水溶液Aの当初の濃度 と同じになった。 次に、水溶液A から取り出した沈殿物 100g に 水溶液B のうちの500gを加 えて溶かしたところ、この水溶液の濃度も水溶液Aの当初の濃度と同じになった。 水溶液Aの当初の濃度はいくらか。 なお、沈殿物を取り除く際には、水分は取り除かれないものとする。 1.22.5% 2.27.5% 3.32.5% 4.37.5% 5.42.5% 国家一般職 2013

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

公務員試験 数的処理 線形計画法についてです。 一度解いて正解はしていたのですが、解説を見たら1日に得られる最大利益kが示されていました。 このkが無くても解けたのですが、他の似たような問題を解く時にも必要にはなってくるのでしょうか?? よろしくお願い致します🙇‍♀️

電気使用量 (kWh/個) 1 252千円 製品 ガス使用量 利益 2 254千円 3 256千円 4 258千円 (m/個) (千円 / 個) A 14 6 14 B 6 4 8 5 260千円 解説 製品Aの製造個数をx, 製品Bの製造個数を」とすると, 電 気使用量に関して,14x+6y<210……① ガス使用量に関して, 6x+4y<120……② が成り立つ。これを座標平面上で考えると 0は直線y=ー台x+35と x軸およびy軸で囲まれた範囲 y 7 yミー 0は直線y=ー号x+30とx軸およびッ軸で囲まれた範囲で 3 2 (6,21) ある。この両範囲の共通部分が電気使用量の上限およびガス の使用量の上限をともに満たすことになる。 ここで,1日に得られる最大利益をんとすると, 14x+8y =kである。この14x+8y=k を表す直線 (図中の太線)が, 0, ②より示される共通範囲を通り, kの値が最大となるよ うにすればよい。kの値が最大となるのは,直線14x+8y=k -+ yミー -x+30 0 がッ=ーx+35と直線y=ー号 -x+30の交点を通過する場合である。この交点の座標は, +35=-+30 より,ー5 x=6 :.y=21 より,(6,21) である。 この (6, 21)を14x+8y=kに代入すると、 14×6+8×21==k より, k=252 となり,1日に得られる最大の利益は, 252千円である。 よって,正答は1である。 正答 1

回答募集中 回答数: 0
1/2